Gaussian process regression coupled with mRMR to predict adulterant concentration in cocaine

被引:0
|
作者
Anzanello, M. J. [1 ,4 ]
Fogliatto, F. S. [1 ]
John, D. [2 ]
Ferrao, M. F. [3 ]
Ortiz, R. S. [4 ,5 ]
Mariotti, K. C. [4 ,5 ]
机构
[1] Univ Fed Rio Grande do Sul, Dept Engn Prod & Transportes, Porto Alegre, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Inst Quim, Programa Posgrad Quim, Porto Alegre, RS, Brazil
[3] Inst Nacl Ciencia & Tecnol Bioanalit INCT Bioanali, Campinas, SP, Brazil
[4] Superintendencia Policia Fed, NSCAD Microeletron, Porto Alegre, RS, Brazil
[5] Inst Nacl Ciencia & Tecnol Forense INCT Forense, Porto Alegre, Brazil
关键词
Cocaine adulterants; Wavelength selection; Gaussian Process regression; ReliefF; MRMR; ATR-FTIR; WAVE-NUMBER SELECTION; MAIN ADULTERANTS; CHARACTERIZE; SPECTROSCOPY; COUNTERFEIT; TOOL;
D O I
10.1016/j.jpba.2024.116294
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Street cocaine is often mixed with various substances that intensify its harmful effects. This paper proposes a framework to identify attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) intervals that best predict the concentration of adulterants in cocaine samples. Wavelengths are ranked according to their relevance through ReliefF and mRMR feature selection approaches, and an iterative process removes less relevant wavelengths based on the ranking suggested by each approach. Gaussian Process (GP) regression models are constructed after each wavelength removal and the prediction performance is evaluated using RMSE. The subset balancing a low RMSE value and a small percentage of retained wavelengths is chosen. The proposed framework was validated using a dataset consisting of 345 samples of cocaine with different amounts of levamisole, caffeine, phenacetin, and lidocaine. Averaged over the four adulterants, the GP regression coupled with the mRMR retained 1.07 % of the 662 original wavelengths, outperforming PLS and SVR regarding prediction performance.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Gaussian Process Regression′s Hyperparameters Optimization to Predict Financial Distress
    Sabek, Amine
    Horak, Jakub
    RETOS-REVISTA DE CIENCIAS DE LA ADMINISTRACION Y ECONOMIA, 2023, 13 (26): : 273 - 289
  • [2] Gaussian process regression model to predict factor of safety of slope stability
    Mahmoodzadeh, Arsalan
    Nejati, Hamid Reza
    Rezaie, Nafiseh
    Mohammed, Adil Hussein
    Ibrahim, Hawkar Hashim
    Mohammadi, Mokhtar
    Rashidi, Shima
    GEOMECHANICS AND ENGINEERING, 2022, 31 (05) : 453 - 460
  • [3] A Gaussian process regression model to predict energy contents of corn for poultry
    Baiz, Abbas Abdullah
    Ahmadi, Hamed
    Shariatmadari, Farid
    Torshizi, Mohammad Amir Karimi
    POULTRY SCIENCE, 2020, 99 (11) : 5838 - 5843
  • [4] Improved Estimation of Water Chlorophyll Concentration With Semisupervised Gaussian Process Regression
    Bazi, Yakoub
    Alajlan, Naif
    Melgani, Farid
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (07): : 2733 - 2743
  • [5] Coupled Gaussian Process Regression for Pose-Invariant Facial Expression Recognition
    Rudovic, Ognjen
    Patras, Ioannis
    Pantic, Maja
    COMPUTER VISION-ECCV 2010, PT II, 2010, 6312 : 350 - +
  • [6] Neuronal Gaussian Process Regression
    Friedrich, Johannes
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [7] RECURSIVE GAUSSIAN PROCESS REGRESSION
    Huber, Marco F.
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3362 - 3366
  • [8] A Gaussian process robust regression
    Murata, N
    Kuroda, Y
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2005, (157): : 280 - 283
  • [9] Bagging for Gaussian process regression
    Chen, Tao
    Ren, Jianghong
    NEUROCOMPUTING, 2009, 72 (7-9) : 1605 - 1610
  • [10] Overview of Gaussian process regression
    He, Zhi-Kun
    Liu, Guang-Bin
    Zhao, Xi-Jing
    Wang, Ming-Hao
    Kongzhi yu Juece/Control and Decision, 2013, 28 (08): : 1121 - 1129