Boundedness and local stability of oscillation in a class of piecewise affine systems

被引:2
作者
Wang, Xinyong [1 ]
Hetel, Laurentiu [2 ]
Lauber, Jimmy [1 ,3 ]
Tang, Ying [2 ]
机构
[1] Univ Polytech Hauts de France, LAMIH, CNRS, UMR 8201, F-59313 Valenciennes, France
[2] Univ Lille, CNRS, Cent Lille, UMR 9189,CRIStAL, F-59000 Lille, France
[3] INSA Hauts de France, F-59313 Valenciennes, France
关键词
Oscillations; Piecewise affine system; Forward invariance; Local stability; LIMIT-CYCLES; LINEAR-SYSTEMS; HYBRID CONTROL; FEEDBACK; EXISTENCE; UNIQUENESS; REGIONS;
D O I
10.1016/j.automatica.2024.111745
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates self-oscillation behaviors occurring in a class of piecewise affine (PWA) systems. We address a particular case of PWA systems with two subsystems and a linear switching surface. Conditions are given for characterizing forward invariant sets containing self-oscillating solutions and domains of attraction Rather than relying on purely computational tools, we provide conditions taking into account the structure of the system. (c) 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:9
相关论文
共 41 条
[1]  
[Anonymous], 1994, LINEAR MATRIX INEQUA
[2]  
Benedetti I., 2007, Nonlinear Dynamics and System Theory, V7, P239
[3]  
Benterki R, 2022, Journal of Mathematics and Computer Science, V12
[4]   Relay-based hybrid control of minimal-order mechanical systems with applications [J].
Bisoffi, Andrea ;
Forni, Fulvio ;
Da Lio, Mauro ;
Zaccarian, Luca .
AUTOMATICA, 2018, 97 :104-114
[5]  
Brogliato B., 2007, THEORY APPL, V2nd
[6]   Conewise linear systems: Non-zenoness and observability [J].
Camlibel, M. Kanat ;
Pang, Jong-Shi ;
Shen, Jinglai .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (05) :1769-1800
[7]  
Cortés J, 2008, IEEE CONTR SYST MAG, V28, P36, DOI 10.1109/MCS.2008.919306
[8]   STABILITY OF SWITCHED AFFINE SYSTEMS: ARBITRARY AND DWELL-TIME SWITCHING [J].
Della Rossa, Matteo ;
Egidio, Lucas N. ;
Jungers, Raphael M. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (04) :2165-2192
[9]   Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations [J].
Di Bernardo, M ;
Johansson, KH ;
Vasca, F .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (04) :1121-1140
[10]   Canonical Forms of Generic Piecewise Linear Continuous Systems [J].
di Bernardo, Mario ;
Montanaro, Umberto ;
Santini, Stefania .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (08) :1911-1915