Quantum simulation of discrete linear dynamical systems and simple iterative methods in linear algebra

被引:3
作者
Jin, Shi [1 ,2 ,3 ,4 ]
Liu, Nana [1 ,3 ,4 ,5 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Minist Educ, Key Lab Sci & Engn Comp, Shanghai 200240, Peoples R China
[4] Shanghai Artificial Intelligence Lab, Shanghai 200240, Peoples R China
[5] Univ Michigan Shanghai Jiao Tong Univ Joint Inst, Shanghai 200240, Peoples R China
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2024年 / 480卷 / 2291期
关键词
quantum simulation; quantum linear algebra; iterative methods; continuous-variable quantum computing; quantum algorithm;
D O I
10.1098/rspa.2023.0370
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum simulation is capable of simulating certain dynamical systems in continuous time-Schr & ouml;dinger's equations being the most direct and well known-more efficiently than classical simulation. Any linear dynamical system can in fact be transformed into a system of Schr & ouml;dinger's equations via a method called Schr & ouml;dingerisation (Jin et al. 2022. Quantum simulation of partial differential equations via Schr & ouml;dingerisation. (https://arxiv.org/abs/2212.13969) and Jin et al. 2023. Phys. Rev. A 108, 032603. (doi:10.1103/PhysRevA.108.032603)). We show how Schr & ouml;dingerisation allows quantum simulation to be directly used for the simulation of continuous-time versions of general (explicit) iterative schemes or discrete linear dynamical systems. In particular, we use this new method to solve linear systems of equations and for estimating the maximum eigenvector and eigenvalue of a matrix, respectively. This method is applicable using either discrete-variable quantum systems or on hybrid continuous-variable and discrete-variable quantum systems. This framework provides an interesting alternative to solve linear algebra problems using quantum simulation.
引用
收藏
页数:16
相关论文
共 43 条
[11]   Practical quantum advantage in quantum simulation [J].
Daley, Andrew J. ;
Bloch, Immanuel ;
Kokail, Christian ;
Flannigan, Stuart ;
Pearson, Natalie ;
Troyer, Matthias ;
Zoller, Peter .
NATURE, 2022, 607 (7920) :667-676
[12]   Combinatorial optimization through variational quantum power method [J].
Daskin, Ammar .
QUANTUM INFORMATION PROCESSING, 2021, 20 (10)
[13]  
Elkabetz O, 2021, ADV NEUR IN, V34
[14]  
Elliott TJ, 2023, Arxiv, DOI arXiv:1707.04250
[15]  
Farhi E., 2000, ARXIV
[16]  
Feynman R., 2018, Feynman and Computation, DOI DOI 10.1007/BF02650179
[17]  
Galor O., 2007, Discrete Dynamical Systems
[18]   Faster ground state preparation and high-precision ground energy estimation with fewer qubits [J].
Ge, Yimin ;
Tura, Jordi ;
Cirac, J. Ignacio .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (02)
[19]   Quantum Singular Value Transformation and Beyond: Exponential Improvements for Quantum Matrix Arithmetics [J].
Gilyen, Andras ;
Su, Yuan ;
Low, Guang Hao ;
Wiebe, Nathan .
PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, :193-204
[20]   An Efficient Algorithm for Sparse Quantum State Preparation [J].
Gleinig, Niels ;
Hoefler, Torsten .
2021 58TH ACM/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2021, :433-438