Quantum simulation of discrete linear dynamical systems and simple iterative methods in linear algebra

被引:3
作者
Jin, Shi [1 ,2 ,3 ,4 ]
Liu, Nana [1 ,3 ,4 ,5 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Minist Educ, Key Lab Sci & Engn Comp, Shanghai 200240, Peoples R China
[4] Shanghai Artificial Intelligence Lab, Shanghai 200240, Peoples R China
[5] Univ Michigan Shanghai Jiao Tong Univ Joint Inst, Shanghai 200240, Peoples R China
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2024年 / 480卷 / 2291期
关键词
quantum simulation; quantum linear algebra; iterative methods; continuous-variable quantum computing; quantum algorithm;
D O I
10.1098/rspa.2023.0370
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum simulation is capable of simulating certain dynamical systems in continuous time-Schr & ouml;dinger's equations being the most direct and well known-more efficiently than classical simulation. Any linear dynamical system can in fact be transformed into a system of Schr & ouml;dinger's equations via a method called Schr & ouml;dingerisation (Jin et al. 2022. Quantum simulation of partial differential equations via Schr & ouml;dingerisation. (https://arxiv.org/abs/2212.13969) and Jin et al. 2023. Phys. Rev. A 108, 032603. (doi:10.1103/PhysRevA.108.032603)). We show how Schr & ouml;dingerisation allows quantum simulation to be directly used for the simulation of continuous-time versions of general (explicit) iterative schemes or discrete linear dynamical systems. In particular, we use this new method to solve linear systems of equations and for estimating the maximum eigenvector and eigenvalue of a matrix, respectively. This method is applicable using either discrete-variable quantum systems or on hybrid continuous-variable and discrete-variable quantum systems. This framework provides an interesting alternative to solve linear algebra problems using quantum simulation.
引用
收藏
页数:16
相关论文
共 43 条
[1]   Continuous Variable Quantum Information: Gaussian States and Beyond [J].
Adesso, Gerardo ;
Ragy, Sammy ;
Lee, Antony R. .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2014, 21 (1-2)
[2]   Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation [J].
Aharonov, Dorit ;
van Dam, Wim ;
Kempe, Julia ;
Landau, Zeph ;
Lloyd, Seth ;
Regev, Oded .
SIAM REVIEW, 2008, 50 (04) :755-787
[3]  
An D, 2023, Arxiv, DOI arXiv:2303.01029
[4]  
An D, 2025, Arxiv, DOI arXiv:2211.05246
[5]  
Andersen UL, 2015, NAT PHYS, V11, P713, DOI [10.1038/NPHYS3410, 10.1038/nphys3410]
[6]   Hamiltonian simulation with nearly optimal dependence on all parameters [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Kothari, Robin .
2015 IEEE 56TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2015, :792-809
[7]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[8]   Quantum finite difference solvers for physics simulation [J].
Chagneau, Anthony ;
Nathoo, Laeticia ;
Alloul, Jeremy ;
Gabriel, Bertrand .
IET QUANTUM COMMUNICATION, 2023, 4 (02) :70-83
[9]   QUANTUM ALGORITHM FOR SYSTEMS OF LINEAR EQUATIONS WITH EXPONENTIALLY IMPROVED DEPENDENCE ON PRECISION [J].
Childs, Andrew M. ;
Kothari, Robin ;
Somma, Rolando D. .
SIAM JOURNAL ON COMPUTING, 2017, 46 (06) :1920-1950
[10]   Preconditioned Quantum Linear System Algorithm [J].
Clader, B. D. ;
Jacobs, B. C. ;
Sprouse, C. R. .
PHYSICAL REVIEW LETTERS, 2013, 110 (25)