Integrating Machine Learning in Clinical Decision Support for Heart Failure Diagnosis: Case Study

被引:0
作者
Spahic, Lemana [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ]
Softic, Adna [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ]
Durak-Nalbantic, Azra [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ]
Begic, Edin [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ]
Stanetic, Bojan [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ]
Vranic, Haris [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ]
机构
[1] Verlab Res Inst Biomed Engn Med Devices & Artific, Sarajevo, Bosnia & Herceg
[2] Int Burch Univ Sarajevo, Sarajevo, Bosnia & Herceg
[3] Bioengn Res & Dev Ctr BioIRC, Kragujevac, Serbia
[4] Univ Sarajevo, Clin Heart Blood Vessels & Rheumatism, Clin Ctr, Sarajevo, Bosnia & Herceg
[5] Sarajevo Sch Sci & Technol, Sarajevo, Bosnia & Herceg
[6] Gen Hosp Abdulah Nakas, Sarajevo, Bosnia & Herceg
[7] Univ Clin Ctr Republ Srpska, Banja Luka, Bosnia & Herceg
[8] Univ Banja Luka, Med Fac, Banja Luka, Bosnia & Herceg
[9] Sarajevo Sch Sci & Technol, Sarajevo 71000, Bosnia & Herceg
来源
MEDICON 2023 AND CMBEBIH 2023, VOL 1 | 2024年 / 93卷
关键词
Artificial intelligence; Heart failure; Prediction; Machine learning; VENTRICULAR EJECTION FRACTION; ARTIFICIAL-INTELLIGENCE; NATRIURETIC PEPTIDE; PREDICTOR;
D O I
10.1007/978-3-031-49062-0_73
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Heart failure is the leading cause of hospitalization in people older than 65. Accurate referrals can reduce the devastating impact of heart failure. Timely diagnosis of heart failure from other cardiovascular conditions based only on symptoms is a major challenge. Machine learning has demonstrated potential for overcoming the diagnostic challenges of cardiovascular diseases. Many research papers are now focusing on application of artificial intelligence methods applied to diagnosis of heart failure, where databases continue to be a limitation. The current study used a dataset of 368 patients (297 patients with diagnosed heart failure, 71 control subjects) from an upper middle-income country, containing information on subject population characteristics, symptoms and laboratory test results. Manual feature selection was performed, focusing on clinical symptoms that are easily measurable. Four common machine learning methods were tested and compared: Decision Tree (DT) algorithm, Random Forest (RF) algorithm, Support Vector Machine (SVM) and Naive Bayes (NB) algorithm. Models were developed through a holdout process of training-validation and testing. Our final model was a Decision Tree, achieving an AUC of 94.3%, with the advantage of being fully intelligible and easily interpreted. The performance achieved suggested that intelligible machine learning models can enhance symptom-based referral of heart failure.
引用
收藏
页码:696 / 705
页数:10
相关论文
共 33 条
[1]   Brain Natriuretic Peptide Biomarkers in Current Clinical and Therapeutic Scenarios of Heart Failure [J].
Alcidi, Gianmarco ;
Goffredo, Giovanni ;
Correale, Michele ;
Brunetti, Natale Daniele ;
Iacoviello, Massimo .
JOURNAL OF CLINICAL MEDICINE, 2022, 11 (11)
[2]  
Aljaaf AJ, 2015, 2015 THIRD INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ADVANCES IN ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING (TAEECE), P101, DOI 10.1109/TAEECE.2015.7113608
[3]  
[Anonymous], 2020, Deafness and hearing loss
[4]   Acute heart failure [J].
Arrigo, Mattia ;
Jessup, Mariell ;
Mullens, Wilfried ;
Reza, Nosheen ;
Shah, Ajay M. ;
Sliwa, Karen ;
Mebazaa, Alexandre .
NATURE REVIEWS DISEASE PRIMERS, 2020, 6 (01)
[5]  
Begic E, 2021, PSYCHIAT DANUB, V33, pS236
[6]  
Cao Z., 2019, INT J MOL SCI, V20, DOI [DOI 10.3390/ijms20081820, 10.3390/ijms20081820]
[7]   Artificial intelligence for the diagnosis of heart failure [J].
Choi, Dong-Ju ;
Park, Jin Joo ;
Ali, Taqdir ;
Lee, Sungyoung .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[8]   New echocardiographic predictors of clinical outcome in patients presenting with heart failure and a preserved left ventricular ejection fraction: a subanalysis of the Ka (Karolinska) Ren (Rennes) Study [J].
Donal, Erwan ;
Lund, Lars H. ;
Oger, Emmanuel ;
Hage, Camilla ;
Persson, Hans ;
Reynaud, Amelie ;
Ennezat, Pierre-Vladimir ;
Bauer, Fabrice ;
Drouet, Elodie ;
Linde, Cecilia ;
Daubert, Claude .
EUROPEAN JOURNAL OF HEART FAILURE, 2015, 17 (07) :680-688
[9]  
Durak-Nalbantic Azra, 2018, Med Arch, V72, P257, DOI [10.5455/medarh.2018.72.257-261, 10.5455/medarh.2018.72.257-261]
[10]  
Durak-Nalbantic Azra, 2013, Med Arch, V67, P241