CellChat for systematic analysis of cell-cell communication from single-cell transcriptomics

被引:169
作者
Jin, Suoqin [1 ,2 ]
Plikus, Maksim V. [3 ,4 ]
Nie, Qing [3 ,4 ,5 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
[2] Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan, Peoples R China
[3] Univ Calif Irvine, NSF Simons Ctr Multiscale Cell Fate Res, Irvine, CA 92697 USA
[4] Univ Calif Irvine, Dept Dev & Cell Biol, Irvine, CA 92697 USA
[5] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
美国国家科学基金会; 美国国家卫生研究院; 中国国家自然科学基金;
关键词
IMMUNE; SKIN;
D O I
10.1038/s41596-024-01045-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in single-cell sequencing technologies offer an opportunity to explore cell-cell communication in tissues systematically and with reduced bias. A key challenge is integrating known molecular interactions and measurements into a framework to identify and analyze complex cell-cell communication networks. Previously, we developed a computational tool, named CellChat, that infers and analyzes cell-cell communication networks from single-cell transcriptomic data within an easily interpretable framework. CellChat quantifies the signaling communication probability between two cell groups using a simplified mass-action-based model, which incorporates the core interaction between ligands and receptors with multisubunit structure along with modulation by cofactors. Importantly, CellChat performs a systematic and comparative analysis of cell-cell communication using a variety of quantitative metrics and machine-learning approaches. CellChat v2 is an updated version that includes additional comparison functionalities, an expanded database of ligand-receptor pairs along with rich functional annotations, and an Interactive CellChat Explorer. Here we provide a step-by-step protocol for using CellChat v2 on single-cell transcriptomic data, including inference and analysis of cell-cell communication from one dataset and identification of altered intercellular communication, signals and cell populations from different datasets across biological conditions. The R implementation of CellChat v2 toolkit and its tutorials together with the graphic outputs are available at https://github.com/jinworks/CellChat. This protocol typically takes similar to 5 min depending on dataset size and requires a basic understanding of R and single-cell data analysis but no specialized bioinformatics training for its implementation.
引用
收藏
页码:180 / 219
页数:42
相关论文
共 50 条
[31]   ESICCC as a systematic computational framework for evaluation, selection, and integration of cell-cell communication inference methods [J].
Luo, Jiaxin ;
Deng, Minghua ;
Zhang, Xuegong ;
Sun, Xiaoqiang .
GENOME RESEARCH, 2023, 33 (10) :1788-1805
[32]   Dissection of intercellular communication using the transcriptome-based framework ICELLNET [J].
Noel, Floriane ;
Massenet-Regad, Lucile ;
Carmi-Levy, Irit ;
Cappuccio, Antonio ;
Grandclaudon, Maximilien ;
Trichot, Coline ;
Kieffer, Yann ;
Mechta-Grigoriou, Fatima ;
Soumelis, Vassili .
NATURE COMMUNICATIONS, 2021, 12 (01)
[33]   In situ tumour arrays reveal early environmental control of cancer immunity [J].
Ortiz-Munoz, Guadalupe ;
Brown, Markus ;
Carbone, Catherine B. ;
Pechuan-Jorge, Ximo ;
Rouilly, Vincent ;
Lindberg, Henrik ;
Ritter, Alex T. ;
Raghupathi, Gautham ;
Sun, Qianbo ;
Nicotra, Tess ;
Mantri, Shreya R. ;
Yang, Angela ;
Doerr, Jonas ;
Nagarkar, Deepti ;
Darmanis, Spyros ;
Haley, Benjamin ;
Mariathasan, Sanjeev ;
Wang, Yulei ;
Gomez-Roca, Carlos ;
de Andrea, Carlos Eduardo ;
Spigel, David ;
Wu, Thomas ;
Delamarre, Lelia ;
Schoeneberg, Johannes ;
Modrusan, Zora ;
Price, Richard ;
Turley, Shannon J. ;
Mellman, Ira ;
Moussion, Christine .
NATURE, 2023, 618 (7966) :827-+
[34]  
Perkel JM, 2021, NATURE, V597, P580, DOI 10.1038/d41586-021-02530-6
[35]   Computation and visualization of cell-cell signaling topologies in single-cell systems data using Connectome [J].
Raredon, Micha Sam Brickman ;
Yang, Junchen ;
Garritano, James ;
Wang, Meng ;
Kushnir, Dan ;
Schupp, Jonas Christian ;
Adams, Taylor S. ;
Greaney, Allison M. ;
Leiby, Katherine L. ;
Kaminski, Naftali ;
Kluger, Yuval ;
Levchenko, Andre ;
Niklason, Laura E. .
SCIENTIFIC REPORTS, 2022, 12 (01)
[36]   Developmental cell programs are co-opted in inflammatory skin disease [J].
Reynolds, Gary ;
Vegh, Peter ;
Fletcher, James ;
Poyner, Elizabeth F. M. ;
Stephenson, Emily ;
Goh, Issac ;
Botting, Rachel A. ;
Huang, Ni ;
Olabi, Bayanne ;
Dubois, Anna ;
Dixon, David ;
Green, Kile ;
Maunder, Daniel ;
Engelbert, Justin ;
Efremova, Mirjana ;
Polanski, Krzysztof ;
Jardine, Laura ;
Jones, Claire ;
Ness, Thomas ;
Horsfall, Dave ;
McGrath, Jim ;
Carey, Christopher ;
Popescu, Dorin-Mirel ;
Webb, Simone ;
Wang, Xiao-Nong ;
Sayer, Ben ;
Park, Jong-Eun ;
Negri, Victor A. ;
Belokhvostova, Daria ;
Lynch, Magnus D. ;
McDonald, David ;
Filby, Andrew ;
Hagai, Tzachi ;
Meyer, Kerstin B. ;
Husain, Akhtar ;
Coxhead, Jonathan ;
Vento-Tormo, Roser ;
Behjati, Sam ;
Lisgo, Steven ;
Villani, Alexandra-Chloe ;
Bacardit, Jaume ;
Jones, Philip H. ;
O'Toole, Edel A. ;
Ogg, Graham S. ;
Rajan, Neil ;
Reynolds, Nick J. ;
Teichmann, Sarah A. ;
Watt, Fiona M. ;
Haniffa, Muzlifah .
SCIENCE, 2021, 371 (6527) :364-+
[37]   Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk [J].
Shao, Xin ;
Li, Chengyu ;
Yang, Haihong ;
Lu, Xiaoyan ;
Liao, Jie ;
Qian, Jingyang ;
Wang, Kai ;
Cheng, Junyun ;
Yang, Penghui ;
Chen, Huajun ;
Xu, Xiao ;
Fan, Xiaohui .
NATURE COMMUNICATIONS, 2022, 13 (01)
[38]   CellTalkDB: a manually curated database of ligand-receptor interactions in humans and mice [J].
Shao, Xin ;
Liao, Jie ;
Li, Chengyu ;
Lu, Xiaoyan ;
Cheng, Junyun ;
Fan, Xiaohui .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)
[39]   New avenues for systematically inferring cell-cell communication: through single-cell transcriptomics data [J].
Shao, Xin ;
Lu, Xiaoyan ;
Liao, Jie ;
Chen, Huajun ;
Fan, Xiaohui .
PROTEIN & CELL, 2020, 11 (12) :866-880
[40]  
Troule K., 2023, PREPRINT, DOI DOI 10.48550/ARXIV.2311.04567