Soybean yield prediction using machine learning algorithms under a cover crop management system

被引:4
作者
Santos, Leticia Bernabe [1 ]
Gentry, Donna [4 ]
Tryforos, Alex [3 ]
Fultz, Lisa [2 ]
Beasley, Jeffrey [1 ]
Gentimis, Thanos [3 ]
机构
[1] Louisiana State Univ, Sch Plant Environm & Soil Sci, 137 Miller Hall, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Sch Plant Environm & Soil Sci, 310 Sturgis Hall, Baton Rouge, LA 70803 USA
[3] Louisiana State Univ, Expt Stat, 161 Martin Woodin Hall, Baton Rouge, LA 70803 USA
[4] Louisiana State Univ, Agr Ctr, 4419 Idlewild Rd, Clinton, LA 70722 USA
来源
SMART AGRICULTURAL TECHNOLOGY | 2024年 / 8卷
关键词
Random forests; Machine learning; Datapoint threshold; Soybeans; Yield prediction; Cover crops; Hyperparameter optimization; Hyperparameter tuning; Dataset Enhancement; PERFORMANCE; COPULA; MODELS;
D O I
10.1016/j.atech.2024.100442
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
This research explores the predictive capabilities of random forests algorithm on datasets coming from standard experiments on crop management systems in soybeans. This is a secondary analysis of a dataset from a project evaluating the relationship of cover crop systems to soybean yield prediction. The purpose of this paper is to compare a random forest algorithm to standard statistical techniques such as linear regression on a clean information rich agronomic experiment. The main findings include an estimate of the hyperparameters for optimal predictions using random forests, a threshold for data for optimal results and a general description of comparison methodologies for AI based techniques.
引用
收藏
页数:8
相关论文
共 23 条
[1]   Machine learning algorithms for soybean yield forecasting in the Brazilian Cerrado [J].
Barbosa dos Santos, Valter ;
Moreno Ferreira dos Santos, Aline ;
da Silva Cabral de Moraes, Jose Reinaldo ;
de Oliveira Vieira, Igor Cristian ;
de Souza Rolim, Glauco .
JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2022, 102 (09) :3665-3672
[2]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[3]   Spatial prediction models for landslide hazards: review, comparison and evaluation [J].
Brenning, A .
NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2005, 5 (06) :853-862
[4]  
Feurer M, 2019, SPRING SER CHALLENGE, P3, DOI 10.1007/978-3-030-05318-5_1
[5]  
Frees E.W., 1998, North American Actuarial Journal, V2, P1, DOI [DOI 10.1080/10920277.1998.10595667, 10.1080/10920277.1998.10595667]
[6]  
Gaskin J.W., 2015, University of Georgia Cooperative Extension Cir. 1077
[7]   Hyperparameter optimization for machine learning models based on Bayesian optimization [J].
Wu J. ;
Chen X.-Y. ;
Zhang H. ;
Xiong L.-D. ;
Lei H. ;
Deng S.-H. .
Journal of Electronic Science and Technology, 2019, 17 (01) :26-40
[8]   Simultaneous corn and soybean yield prediction from remote sensing data using deep transfer learning [J].
Khaki, Saeed ;
Pham, Hieu ;
Wang, Lizhi .
SCIENTIFIC REPORTS, 2021, 11 (01)
[9]   Recent advances in the use of digital technologies in agri-food processing: A short review [J].
Konfo, Tetede Rodrigue Christian ;
Djouhoub, Fowe Michelle Carole ;
Hounhouigan, Menouwesso Harold ;
Dahouenon-Ahoussi, Edwige ;
Avlessi, Felicien ;
Sohounhloue, Codjo Koko Dominique .
APPLIED FOOD RESEARCH, 2023, 3 (02)
[10]   Machine Learning in Agriculture: A Review [J].
Liakos, Konstantinos G. ;
Busato, Patrizia ;
Moshou, Dimitrios ;
Pearson, Simon ;
Bochtis, Dionysis .
SENSORS, 2018, 18 (08)