Mapping Surface Water Fraction Over the Pan-Tropical Region Using CYGNSS Data

被引:30
作者
Yan, Qingyun [1 ,2 ,3 ]
Liu, Shuci [4 ]
Chen, Tiexi [5 ]
Jin, Shuanggen [6 ]
Xie, Tao [6 ]
Huang, Weimin [7 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Engn, Nanjing 210044, Peoples R China
[2] Chuzhou Univ, Anhui Engn Res Ctr Remote Sensing & Geoinformat, Anhui Prov Key Lab Phys Geog Environm, Chuzhou 239000, Peoples R China
[3] Chuzhou Univ, Anhui Ctr Collaborat Innovat Geog Informat Integr, Chuzhou 239000, Peoples R China
[4] Queensland Govt, Dept Environm & Sci, Brisbane, Qld 4102, Australia
[5] Nanjing Univ Informat Sci & Technol, Sch Geog Sci, Nanjing 210044, Peoples R China
[6] Nanjing Univ Informat Sci & Technol, Sch Remote Sensing & Geomat Engn, Nanjing 210044, Peoples R China
[7] Mem Univ, Fac Engn & Appl Sci, St John, NF A1B 3X5, Canada
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
关键词
Cyclone global navigation satellite system (CYGNSS); global navigation satellite system-reflectometry (GNSS-R); global surface water (GSW); global surface water dynamic (GLAD); surface water; SOIL-MOISTURE;
D O I
10.1109/TGRS.2024.3394744
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A new method, which integrates multivariable consisting of soil moisture (SM) active passive (SMAP)-derived SM and vegetation optical depth, the water seasonality, geolocation, digital elevation model (DEM), slope, and biomass as inputs and adopts the technique of bootstrap aggregation of regression trees (BARTs), is proposed for retrieving monthly surface water fraction (SWF) at a spatial resolution of 0.025 degrees from cyclone global navigation satellite system (CYGNSS) data. The model is trained using surface water microwave product series (SWAMPS) data with a coarser resolution of 25 km and then applied to CYGNSS data with an enhanced resolution of 0.025 degrees to generate high-resolution water maps. The resulting CYGNSS SWF (CSWF) maps are evaluated by comparing them with other water data sources, namely, SWAMPS, global surface water (GSW), and global surface water dynamics (GLADs), as well as ground measurements. A quadruple collocation (QC) analysis indicates that the CSWF results exhibit the lowest error variance among the four SWF datasets. Furthermore, additional testing with water level (WL) measurements demonstrates a strong correlation with station data and clear seasonal patterns. Notably, the CSWF estimates significantly improve spatial coverage compared to both optical data (GSW and GLAD) with enhanced spatial resolution and the coarser SWAMPS data. This study underscores the effectiveness and efficiency of CSWF estimates, highlighting their potential as a valuable complement to existing microwave- and optical-based surface water products.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
[1]   Inland Water Body Mapping Using CYGNSS Coherence Detection [J].
Al-Khaldi, Mohammad M. ;
Johnson, Joel T. ;
Gleason, Scott ;
Chew, Clara C. ;
Gerlein-Safdi, Cynthia ;
Shah, Rashmi ;
Zuffada, Cinzia .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09) :7385-7394
[2]  
[Anonymous], 2021, Annual Climate Statement 2021: Wetter and Warmer Than Average-Social Media Blog-Bureau of Meteorology
[3]  
Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350
[4]  
Breiman L., 1984, Classification and regression trees, DOI [10.1201/9781315139470, DOI 10.1201/9781315139470]
[5]   Consolidating the Precision of Interferometric GNSS-R Ocean Altimetry Using Airborne Experimental Data [J].
Cardellach, Estel ;
Rius, Antonio ;
Martin-Neira, Manuel ;
Fabra, Fran ;
Nogues-Correig, Oleguer ;
Ribo, Serni ;
Kainulainen, Juha ;
Camps, Adriano ;
D'Addio, Salvatore .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (08) :4992-5004
[6]   First Results of a GNSS-R Experiment From a Stratospheric Balloon Over Boreal Forests [J].
Carreno-Luengo, Hugo ;
Camps, Adriano ;
Querol, Jorge ;
Forte, Giuseppe .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (05) :2652-2663
[7]  
Chakrabarti S, 2018, IEEE T GEOSCI REMOTE, V56, P1238, DOI [10.1109/TGRS.2017.2722236, 10.1109/tgrs.2017.2722236]
[8]   Comparison of SAR and CYGNSS Surface Water Extent Metrics [J].
Chapman, Bruce D. ;
Russo, Ilaria Mara ;
Galdi, Carmela ;
Morris, Mary ;
di Bisceglie, Maurizio ;
Zuffada, Cinzia ;
Downs, Brandi ;
Lavalle, Marco ;
Loria, Eric ;
OaBrien, Andrew J. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 :3235-3245
[9]   Soil Moisture Sensing Using Spaceborne GNSS Reflections: Comparison of CYGNSS Reflectivity to SMAP Soil Moisture [J].
Chew, C. C. ;
Small, E. E. .
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (09) :4049-4057
[10]   Flooding and inundation maps using interpolated CYGNSS reflectivity observations [J].
Chew, Clara ;
Small, Eric ;
Huelsing, Hannah .
REMOTE SENSING OF ENVIRONMENT, 2023, 293