A Robust Induced Fit Docking Approach with the Combination of the Hybrid All-Atom/United-Atom/Coarse-Grained Model and Simulated Annealing

被引:0
作者
Lu, Dexin [1 ,2 ]
Luo, Ding [1 ,2 ]
Zhang, Yuwei [3 ]
Wang, Binju [1 ,2 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 360015, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, Fujian Prov Key Lab Theoret & Computat Chem, Xiamen 360015, Peoples R China
[3] Nanjing Normal Univ, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Sch Chem & Mat Sci, Jiangsu Key Lab New Power Batteries, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
PROTEIN SECONDARY STRUCTURE; ELASTIC NETWORK MODEL; MOLECULAR-DYNAMICS; FORCE-FIELD; RECEPTOR FLEXIBILITY; LIGAND DOCKING; DRUG DESIGN; OPTIMIZATION; RECOGNITION; PREDICTION;
D O I
10.1021/acs.jctc.4c00653
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular docking remains an indispensable tool in computational biology and structure-based drug discovery. However, the correct prediction of binding poses remains a major challenge for molecular docking, especially for target proteins where a substrate binding induces significant reorganization of the active site. Here, we introduce an Induced Fit Docking (IFD) approach named AA/UA/CG-SA-IFD, which combines a hybrid All-Atom/United-Atom/Coarse-Grained model with Simulated Annealing. In this approach, the core region is represented by the All-Atom(AA) model, while the protein environment beyond the core region and the solvent are treated with either the United-Atom (UA) or the Coarse-Grained (CG) model. By combining the Elastic Network Model (ENM) for the CG region, the hybrid model ensures a reasonable description of ligand binding and the environmental effects of the protein, facilitating highly efficient and reliable sampling of ligand binding through Simulated Annealing (SA) at a high temperature. Upon validation with two testing sets, the AA/UA/CG-SA-IFD approach demonstrates remarkable accuracy and efficiency in induced fit docking, even for challenging cases where the docked poses significantly deviate from crystal structures.
引用
收藏
页码:6414 / 6423
页数:10
相关论文
共 90 条
  • [1] Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
    Abraham, Mark James
    Murtola, Teemu
    Schulz, Roland
    Páll, Szilárd
    Smith, Jeremy C.
    Hess, Berk
    Lindah, Erik
    [J]. SoftwareX, 2015, 1-2 : 19 - 25
  • [2] Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19
    Acharya, A.
    Agarwal, R.
    Baker, M. B.
    Baudry, J.
    Bhowmik, D.
    Boehm, S.
    Byler, K. G.
    Chen, S. Y.
    Coates, L.
    Cooper, C. J.
    Demerdash, O.
    Daidone, I
    Eblen, J. D.
    Ellingson, S.
    Forli, S.
    Glaser, J.
    Gumbart, J. C.
    Gunnels, J.
    Hernandez, O.
    Irle, S.
    Kneller, D. W.
    Kovalevsky, A.
    Larkin, J.
    Lawrence, T. J.
    LeGrand, S.
    Liu, S-H
    Mitchell, J. C.
    Park, G.
    Parks, J. M.
    Pavlova, A.
    Petridis, L.
    Poole, D.
    Pouchard, L.
    Ramanathan, A.
    Rogers, D. M.
    Santos-Martins, D.
    Scheinberg, A.
    Sedova, A.
    Shen, Y.
    Smith, J. C.
    Smith, M. D.
    Soto, C.
    Tsaris, A.
    Thavappiragasam, M.
    Tillack, A. F.
    Vermaas, J. V.
    Vuong, V. Q.
    Yin, J.
    Yoo, S.
    Zahran, M.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (12) : 5832 - 5852
  • [3] DOCK 6: Impact of New Features and Current Docking Performance
    Allen, William J.
    Balius, Trent E.
    Mukherjee, Sudipto
    Brozell, Scott R.
    Moustakas, Demetri T.
    Lang, P. Therese
    Case, David A.
    Kuntz, Irwin D.
    Rizzo, Robert C.
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2015, 36 (15) : 1132 - 1156
  • [4] Ensemble Docking in Drug Discovery
    Amaro, Rommie E.
    Baudry, Jerome
    Chodera, John
    Demir, Ozlem
    McCammon, J. Andrew
    Miao, Yinglong
    Smith, Jeremy C.
    [J]. BIOPHYSICAL JOURNAL, 2018, 114 (10) : 2271 - 2278
  • [5] A complex multiscale virtual particle model based elastic network model (CMVP-ENM) for the normal mode analysis of biomolecular complexes
    Anand, D. Vijay
    Meng, Zhenyu
    Xia, Kelin
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (08) : 4359 - 4366
  • [6] Understanding the challenges of protein flexibility in drug design
    Antunes, Dinler A.
    Devaurs, Didier
    Kavraki, Lydia E.
    [J]. EXPERT OPINION ON DRUG DISCOVERY, 2015, 10 (12) : 1301 - 1313
  • [7] Anisotropy of fluctuation dynamics of proteins with an elastic network model
    Atilgan, AR
    Durell, SR
    Jernigan, RL
    Demirel, MC
    Keskin, O
    Bahar, I
    [J]. BIOPHYSICAL JOURNAL, 2001, 80 (01) : 505 - 515
  • [8] ProDy: Protein Dynamics Inferred from Theory and Experiments
    Bakan, Ahmet
    Meireles, Lidio M.
    Bahar, Ivet
    [J]. BIOINFORMATICS, 2011, 27 (11) : 1575 - 1577
  • [9] GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION
    BERENDSEN, HJC
    VANDERSPOEL, D
    VANDRUNEN, R
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) : 43 - 56
  • [10] Systematic Exploitation of Multiple Receptor Conformations for Virtual Ligand Screening
    Bottegoni, Giovanni
    Rocchia, Walter
    Rueda, Manuel
    Abagyan, Ruben
    Cavalli, Andrea
    [J]. PLOS ONE, 2011, 6 (05):