Diagnosis of pregnancy disorder in the first-trimester patient plasma with Raman spectroscopy and protein analysis

被引:4
作者
Mathew, Ansuja P. [1 ,2 ]
Cutshaw, Gabriel [1 ,2 ]
Appel, Olivia [1 ,2 ]
Funk, Meghan [3 ]
Synan, Lilly [1 ,2 ]
Waite, Joshua [4 ]
Ghazvini, Saman [1 ,2 ]
Wen, Xiaona [2 ]
Sarkar, Soumik [4 ]
Santillan, Mark [3 ]
Santillan, Donna [3 ]
Bardhan, Rizia [1 ,2 ]
机构
[1] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA
[2] Iowa State Univ, Nanovaccine Inst, Ames, IA 50011 USA
[3] Univ Iowa Hosp & Clin, Carver Coll Med, Dept Obstet & Gynecol, Iowa City, IA USA
[4] Iowa State Univ, Dept Mech Engn, Ames, IA USA
基金
美国国家卫生研究院;
关键词
first trimester; gestational diabetes; mass spectrometry; metabolism; pregnancy; Raman spectroscopy; GESTATIONAL DIABETES-MELLITUS; LONGITUDINAL METABOLOMICS; BREAST-CANCER; METABOLITES; SPECTRA; WOMEN; CYCLE;
D O I
10.1002/btm2.10691
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Gestational diabetes mellitus (GDM) is a pregnancy disorder associated with short- and long-term adverse outcomes in both mothers and infants. The current clinical test of blood glucose levels late in the second trimester is inadequate for early detection of GDM. Here we show the utility of Raman spectroscopy (RS) for rapid and highly sensitive maternal metabolome screening for GDM in the first trimester. Key metabolites, including phospholipids, carbohydrates, and major amino acids, were identified with RS and validated with mass spectrometry, enabling insights into associated metabolic pathway enrichment. Using classical machine learning (ML) approaches, we showed the performance of the RS metabolic model (cross-validation AUC 0.97) surpassed that achieved with patients' clinical data alone (cross-validation AUC 0.59) or prior studies with single biomarkers. Further, we analyzed novel proteins and identified fetuin-A as a promising candidate for early GDM prediction. A correlation analysis showed a moderate to strong correlation between multiple metabolites and proteins, suggesting a combined protein-metabolic analysis integrated with ML would enable a powerful screening platform for first trimester diagnosis. Our study underscores RS metabolic profiling as a cost-effective tool that can be integrated into the current clinical workflow for accurate risk stratification of GDM and to improve both maternal and neonatal outcomes.
引用
收藏
页数:17
相关论文
共 88 条
[1]   Metabolomic Biomarkers in Gestational Diabetes Mellitus: A Review of the Evidence [J].
Alesi, Simon ;
Ghelani, Drishti ;
Rassie, Kate ;
Mousa, Aya .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (11)
[2]   The prevention of gestational diabetes mellitus (The role of lifestyle): a meta-analysis [J].
Altemani, Abdullah H. ;
Alzaheb, Riyadh A. .
DIABETOLOGY & METABOLIC SYNDROME, 2022, 14 (01)
[3]   Metabolomic profiling in the prediction of gestational diabetes mellitus [J].
Bentley-Lewis, Rhonda ;
Huynh, Jennifer ;
Xiong, Grace ;
Lee, Hang ;
Wenger, Julia ;
Clish, Clary ;
Nathan, David ;
Thadhani, Ravi ;
Gerszten, Robert .
DIABETOLOGIA, 2015, 58 (06) :1329-1332
[4]   Classification of inflammatory bowel diseases by means of Raman spectroscopic imaging of epithelium cells [J].
Bielecki, Christiane ;
Bocklitz, Thomas W. ;
Schmitt, Michael ;
Krafft, Christoph ;
Marquardt, Claudio ;
Gharbi, Akram ;
Knoesel, Thomas ;
Stallmach, Andreas ;
Popp, Juergen .
JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (07)
[5]   Targeted and untargeted metabolomic approach for GDM diagnosis [J].
Burzynska-Pedziwiatr, Izabela ;
Dudzik, Danuta ;
Sansone, Anna ;
Malachowska, Beata ;
Zieleniak, Andrzej ;
Zurawska-Klis, Monika ;
Ferreri, Carla ;
Chatgilialoglu, Chryssostomos ;
Cypryk, Katarzyna ;
Wozniak, Lucyna A. ;
Markuszewski, Michal J. ;
Bukowiecka-Matusiak, Malgorzata .
FRONTIERS IN MOLECULAR BIOSCIENCES, 2023, 9
[6]   Using Raman spectroscopy to characterize biological materials [J].
Butler, Holly J. ;
Ashton, Lorna ;
Bird, Benjamin ;
Cinque, Gianfelice ;
Curtis, Kelly ;
Dorney, Jennifer ;
Esmonde-White, Karen ;
Fullwood, Nigel J. ;
Gardner, Benjamin ;
Martin-Hirsch, Pierre L. ;
Walsh, Michael J. ;
McAinsh, Martin R. ;
Stone, Nicholas ;
Martin, Francis L. .
NATURE PROTOCOLS, 2016, 11 (04) :664-687
[7]   Maternal and fetal amino acid concentrations in normal pregnancies and in pregnancies with gestational diabetes mellitus [J].
Cetin, I ;
de Santis, MSN ;
Taricco, E ;
Radaelli, T ;
Teng, C ;
Ronzoni, S ;
Spada, R ;
Milani, S ;
Pardi, G .
AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2005, 192 (02) :610-617
[8]   Raman Spectroscopy and Imaging in Bioanalytics [J].
Cialla-May, Dana ;
Krafft, Christoph ;
Roesch, Petra ;
Deckert-Gaudig, Tanja ;
Frosch, Torsten ;
Jahn, Izabella J. ;
Pahlow, Susanne ;
Stiebing, Clara ;
Meyer-Zedler, Tobias ;
Bocklitz, Thomas ;
Schie, Iwan ;
Deckert, Volker ;
Popp, Juergen .
ANALYTICAL CHEMISTRY, 2022, 94 (01) :86-119
[9]   Galactose in human metabolism, glycosylation and congenital metabolic diseases: Time for a closer look [J].
Conte, Federica ;
van Buuringen, Nicole ;
Voermans, Nicol C. ;
Lefeber, Dirk J. .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2021, 1865 (08)
[10]   Compensate for or Minimize Matrix Effects? Strategies for Overcoming Matrix Effects in Liquid Chromatography-Mass Spectrometry Technique: A Tutorial Review [J].
Cortese, Manuela ;
Gigliobianco, Maria Rosa ;
Magnoni, Federico ;
Censi, Roberta ;
Di Martino, Piera .
MOLECULES, 2020, 25 (13)