Exploring the Cryopreservation Mechanism and Direct Removal Strategy of TAPS in Red Blood Cell Cryopreservation

被引:1
作者
Zhao, Rui [1 ]
Liu, Xiangjian [1 ]
Ekpo, Marlene Davis [1 ,2 ,5 ]
He, Yongju [3 ]
Tan, Songwen [4 ]
机构
[1] Cent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410013, Hunan, Peoples R China
[2] Hunan Pilot Free Trade Zone Global Cell Bank, Changsha 410000, Hunan, Peoples R China
[3] Cent South Univ, Sch Mat Sci & Engn, Changsha 410013, Hunan, Peoples R China
[4] Monash Univ, Monash Suzhou Res Inst, Suzhou 215000, Sip, Peoples R China
[5] Hunan Univ Commerce, Changsha 410000, Hunan, Peoples R China
关键词
red blood cells; transfusion therapy; TAPS; cryopreservation; cryobiology; HYDROXYETHYL STARCH; RECRYSTALLIZATION; TRANSFUSION; CRYOBIOLOGY; ENABLES;
D O I
10.1021/acsbiomaterials.3c01701
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Cryopreservation of red blood cells (RBCs) plays an indispensable role in modern clinical transfusion therapy. Researchers are dedicated to finding cryoprotectants (CPAs) with high efficiency and low toxicity to prevent RBCs from cryopreservation injury. This study presents, for the first time, the feasibility and underlying mechanisms of a novel CPA called tris(hydroxymethyl)aminomethane-3-propanesulfonic acid (TAPS) in RBCs cryopreservation. The results demonstrated that the addition of TAPS achieved a post-thaw recovery of RBCs at 79.12 +/- 0.67%, accompanied by excellent biocompatibility (above 97%). Subsequently, the mechanism for preventing RBCs from cryopreservation injury was elucidated. On one hand, TAPS exhibits a significant amount of bound water and effectively inhibits ice recrystallization, thereby reducing mechanical damage. On the other hand, TAPS demonstrates high capacity to scavenge reactive oxygen species and strong endogenous antioxidant enzyme activity, providing effective protection against oxidative damage. Above all, TAPS can be readily removed through direct washing, and the RBCs after washing showed no significant differences in various physiological parameters (SEM, RBC hemolysis, ESR, ATPase activity, and Hb content) compared to fresh RBCs. Finally, the presented mathematical modeling analysis indicates the good benefits of TAPS. In summary, TAPS holds potential for both research and practical in the field of cryobiology, offering innovative insights for the improvement of RBCs cryopreservation in transfusion medicine.
引用
收藏
页码:4259 / 4268
页数:10
相关论文
共 50 条
[31]   PRACTICAL APPROACHES AND EXPERIENCES IN CRYOPRESERVATION OF HUMAN RED-BLOOD-CELLS WITH GLYCEROL [J].
WALTHER, W ;
HENNING, U .
INFUSIONSTHERAPIE UND TRANSFUSIONSMEDIZIN, 1995, 22 :30-32
[32]   Effects of cell concentration, time of fresh storage, and cryopreservation on peripheral blood stem cells PBSC fresh storage and cryopreservation [J].
Araujo, Anelise B. ;
Salton, Gabrielle D. ;
Angeli, Melissa H. ;
Furlan, Juliana M. ;
Schmalfuss, Tissiana ;
Rohsig, Liane M. .
TRANSFUSION AND APHERESIS SCIENCE, 2022, 61 (01)
[33]   CRYOPRESERVATION OF HUMAN RED-BLOOD-CELLS IN PRESENCE OF HYDROXYETHYL STARCH .2. VIABILITY ANALYTICS [J].
SPUTTEK, A ;
BACHER, C ;
LANGER, R ;
KRON, W ;
HENRICH, HA ;
RAU, G .
INFUSIONSTHERAPIE UND TRANSFUSIONSMEDIZIN, 1992, 19 (06) :276-282
[34]   Cryopreservation of red blood cells: Effect on rheologic properties and associated metabolic and nitric oxide related parameters [J].
Bizjak, Daniel Alexander ;
Jungen, Pia ;
Bloch, Wilhelm ;
Grau, Marijke .
CRYOBIOLOGY, 2018, 84 :59-68
[35]   Glycerol-Free Cryopreservation of Red Blood Cells Enabled by Ice-Recrystallization-Inhibiting Polymers [J].
Deller, Robert C. ;
Vatish, Manu ;
Mitchell, Daniel A. ;
Gibson, Matthew I. .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2015, 1 (09) :789-794
[36]   Optimization of Blood Handling and Peripheral Blood Mononuclear Cell Cryopreservation of Low Cell Number Samples [J].
Hope, Christopher M. ;
Dao Huynh ;
Wong, Ying Ying ;
Oakey, Helena ;
Perkins, Griffith Boord ;
Trung Nguyen ;
Binkowski, Sabrina ;
Minh Bui ;
Choo, Ace Y. L. ;
Gibson, Emily ;
Huang, Dexing ;
Kim, Ki Wook ;
Ngui, Katrina ;
Rawlinson, William D. ;
Sadlon, Timothy ;
Couper, Jennifer J. ;
Penno, Megan A. S. ;
Barry, Simon C. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (17)
[37]   Benefits of blood cell transplant cryopreservation with oxypolygelatine (Gelifundol) plasma substitute [J].
DiNicola, M ;
Siena, S ;
Bregni, M ;
Belli, N ;
Milanesi, M ;
Ruffini, PA ;
Malaffo, F ;
Ravagnani, F ;
Gianni, AM .
BONE MARROW TRANSPLANTATION, 1996, 18 (03) :619-623
[38]   Cryopreservation of functionally active blood nuclear cell membranes at −80°C [J].
E. P. Svedentsov ;
T. V. Tumanova ;
A. N. Khudyakov ;
O. O. Zaytseva ;
O. N. Solomina ;
S. V. Utemov ;
F. S. Sherstnev .
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology, 2008, 2 (1) :19-25
[39]   The Effect of Cryopreservation on Umbilical Cord Blood Endothelial Progenitor Cell Differentiation [J].
Lu, Xiaomei ;
Proctor, Steve J. ;
Dickinson, Anne M. .
CELL TRANSPLANTATION, 2008, 17 (12) :1423-1428
[40]   Cryopreservation of rare pediatric red blood cells for support following bone marrow transplant [J].
Kelly, Kathleen ;
Helander, Louise ;
Hazegh, Kelsey ;
Stanley, Crystal ;
Moss, Raymond ;
Mack, Samantha ;
Sanders, Mary L. ;
Gurley, Janice ;
McKinney, Chris ;
Dumont, Larry J. ;
Annen, Kyle .
TRANSFUSION, 2022, 62 (05) :954-960