Enhancing particle string detection in electrorheological plasmas using asymmetrical kernel convolutional networks

被引:5
作者
Klein, M. [1 ,2 ]
Dormagen, N. [1 ,2 ]
Dietz, C. [1 ]
Thoma, M. H. [1 ]
Schwarz, M. [2 ]
机构
[1] Justus Liebig Univ, Inst Phys 1, D-35392 Giessen, Germany
[2] THM Univ Appl Sci, NanoP, D-35390 Giessen, Germany
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2024年 / 5卷 / 02期
关键词
complex plasma; electrorheology; convolutional neural network; encoder-decoder network;
D O I
10.1088/2632-2153/ad4d3e
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Under different plasma conditions and electric fields in a complex plasma the plasma particles organize themselves in a string-like or chain-like manner. A phase transition from string-like to an isotropic particle distribution is observed at different electrical conditions. The streaming of charged ions around plasma particles with the surrounding electric field gives the plasma its electrorheological properties. The visibility of individual particles in a complex plasma opens up the opportunity to examine properties and phase transitions of such electrorheological fluids in detail. Because of the limited one-dimensional symmetry, determining the configuration of a particle and recognizing strings in particle distributions is not always straightforward. Several approaches have already been used to analyse particle clouds while either considering each particle locally or considering the particle cloud as a whole without providing information about single particle configurations. This paper presents a new machine learning approach that takes advantage of particle distributions over the entire particle cloud and detects all string-like particles at once, using a convolutional neural network in form of an encoder-decoder network with asymmetric kernel convolutions. This not only enhances the result quality but also accelerates the evaluation process, possibly enabling real-time analyses on electrorheological phase transitions, while achieving an accuracy of over 95% on manually labelled data.
引用
收藏
页数:12
相关论文
共 21 条
[1]   Complex plasmas: a laboratory for strong correlations [J].
Bonitz, M. ;
Henning, C. ;
Block, D. .
REPORTS ON PROGRESS IN PHYSICS, 2010, 73 (06)
[2]   Weakly anisotropic and string fluid phases in magnetorheological systems [J].
Brandt, Philip ;
Ivlev, Alexei V. ;
Morfill, Gregor E. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2011, 323 (10) :1368-1371
[3]   Phase transition in electrorheological plasmas [J].
Dietz, Christopher ;
Budak, Johannes ;
Kamprich, Tobias ;
Kretschmer, Michael ;
Thoma, Markus H. .
CONTRIBUTIONS TO PLASMA PHYSICS, 2021, 61 (10)
[4]   Multi-Particle Tracking in Complex Plasmas Using a Simplified and Compact U-Net [J].
Dormagen, Niklas ;
Klein, Max ;
Schmitz, Andreas S. ;
Thoma, Markus H. ;
Schwarz, Mike .
JOURNAL OF IMAGING, 2024, 10 (02)
[5]  
Gavrikov P., 2020, Visualkeras
[6]   Fast 3D particle reconstruction using a convolutional neural network: application to dusty plasmas [J].
Himpel, Michael ;
Melzer, Andre .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (04)
[7]   Wake potential of a dust grain in a plasma with ion flow [J].
Ishihara, O ;
Vladimirov, SV .
PHYSICS OF PLASMAS, 1997, 4 (01) :69-74
[8]   First observation of electrorheological plasmas [J].
Ivlev, A. V. ;
Morfill, G. E. ;
Thomas, H. M. ;
Rath, C. ;
Joyce, G. ;
Huber, P. ;
Kompaneets, R. ;
Fortov, V. E. ;
Lipaev, A. M. ;
Molotkov, V. I. ;
Reiter, T. ;
Turin, M. ;
Vinogradov, P. .
PHYSICAL REVIEW LETTERS, 2008, 100 (09)
[9]   Electrorheological Complex Plasmas [J].
Ivlev, Alexei V. ;
Brandt, Philip C. ;
Morfill, Gregor E. ;
Raeth, Christoph ;
Thomas, Hubertus M. ;
Joyce, Glenn ;
Fortov, Vladimir E. ;
Lipaev, Andrey M. ;
Molotkov, Vladimir I. ;
Petrov, Oleg F. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2010, 38 (04) :733-740
[10]   Recrystallization in string-fluid complex plasmas [J].
Joshi, E. ;
Pustylnik, M. Y. ;
Thoma, M. H. ;
Thomas, H. M. ;
Schwabe, M. .
PHYSICAL REVIEW RESEARCH, 2023, 5 (01)