Highly stretchable, self-healing, antibacterial, conductive, and amylopectin-enhanced hydrogels with gallium droplets loading as strain sensors

被引:21
|
作者
Hu, Feihong [1 ]
Dong, Baoting [1 ]
Yu, Dehai [1 ,5 ,6 ]
Zhao, Rui [1 ]
Chen, Wei [4 ]
Song, Zhaoping [3 ]
Lu, Peng [3 ]
Zhang, Fengshan [5 ,6 ]
Wang, Zhaojiang [1 ]
Liu, Xiaona [1 ]
Wang, Huili [1 ]
Liu, Wenxia [1 ]
Li, Huihui [2 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, State Key Lab Biobased Mat & Green Papermaking, Jinan 250353, Shandong, Peoples R China
[2] Shandong Univ, Qilu Hosp, Ctr Reprod Med, Dept Obstet & Gynecol, Jinan 250012, Shandong, Peoples R China
[3] Guangxi Univ, Coll Light Ind & Food Engn, Guangxi Key Lab Clean Pulp & Papermaking & Pollut, Nanning 530004, Peoples R China
[4] Qufu Normal Univ, Coll Engn, Rizhao 276826, Peoples R China
[5] Shandong Huatai Paper Co Ltd, Dongying 257335, Shandong, Peoples R China
[6] Shandong Yellow Triangle Biotechnol Ind Res Inst C, Dongying 257335, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Amylopectin-enhanced hydrogels; Liquid metal; Bio-compatible conductive hydrogels; Human -computer interaction; Flexible strain sensors; ASSOCIATION; TOUGH;
D O I
10.1016/j.carbpol.2024.122357
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In this study, we address the challenge of developing highly conductive hydrogels with enhanced stretchability for use in wearable sensors, which are critical for the precise detection of human motion and subtle physiological strains. Our novel approach utilizes amylopectin, a biopolymer, for the uniform integration of liquid metal gallium into the hydrogel matrix. This integration results in a conductive hydrogel characterized by remarkable elasticity (up to 7100 % extensibility) and superior electrical conductance (Gauge Factor = 31.4), coupled with a minimal detection limit of less than 0.1 % and exceptional durability over 5000 cycles. The hydrogel demonstrates significant antibacterial activity, inhibiting microbial growth in moist environments, thus enhancing its applicability in medical settings. Employing a synthesis process that involves ambient condition polymerization of acrylic acid, facilitated by a hydrophobic associative framework, this hydrogel stands out for its rapid gelation and robust mechanical properties. The potential applications of this hydrogel extend beyond wearable sensors, promising advancements in human-computer interaction through technologies like wireless actuation of robotic systems. This study not only introduces a viable material for current wearable technologies but also sets a foundation for future innovations in bio-compatible sensors and interactive devices.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Highly Conductive, Stretchable, Adhesive, and Self-Healing Polymer Hydrogels for Strain and Pressure Sensor
    Yang, Chunying
    Yin, Jialin
    Chen, Zhuo
    Du, Haishun
    Tian, Minghua
    Zhang, Miaomiao
    Zheng, Jinxin
    Ding, Lan
    Zhang, Pengfei
    Zhang, Xinyu
    Deng, Kuilin
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2020, 305 (12)
  • [2] Highly Stretchable and Conductive Self-Healing Hydrogels for Temperature and Strain Sensing and Chronic Wound Treatment
    Zhang, Jieyu
    Wu, Can
    Xu, Yuanyuan
    Chen, Jiali
    Ning, Ning
    Yang, Zeyu
    Guo, Yi
    Hu, Xuefeng
    Wang, Yunbing
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (37) : 40990 - 40999
  • [3] Self-healing, self-adhesive, stretchable and flexible conductive hydrogels for high-performance strain sensors
    Li, Ruirui
    Ren, Jie
    Li, Meng
    Zhang, Minmin
    Li, Yan
    Yang, Wu
    SOFT MATTER, 2023, 19 (30) : 5723 - 5736
  • [4] Highly Stretchable and Self-Healing Strain Sensors Based on Nanocellulose-Supported Graphene Dispersed in Electro-Conductive Hydrogels
    Zheng, Chunxiao
    Yue, Yiying
    Gan, Lu
    Xu, Xinwu
    Mei, Changtong
    Han, Jingquan
    NANOMATERIALS, 2019, 9 (07):
  • [5] Highly stretchable, self-healing, self-adhesive and conductive nanocomposite hydrogels based on multi-reversible interactions as multifunctional strain sensors
    Chen, Meijun
    Lei, Kun
    Guo, Pengshan
    Liu, Xin
    Zhao, Pengchao
    Han, Meng
    Cai, Bianyun
    Li, Guangda
    Li, Jinghua
    Cui, Jingqiang
    Wang, Xinling
    EUROPEAN POLYMER JOURNAL, 2023, 199
  • [6] Self-healing, antibacterial, and conductive double network hydrogel for strain sensors
    Liu, Chenglu
    Xu, Zhengyan
    Chandrasekaran, Sundaram
    Liu, Yongping
    Wu, Mengyang
    CARBOHYDRATE POLYMERS, 2023, 303
  • [7] Highly Stretchable, Compressible, Adhesive, Conductive Self-healing Composite Hydrogels with Sensor Capacity
    Ji-Jun Wang
    Qiang Zhang
    Xing-Xiang Ji
    Li-Bin Liu
    Chinese Journal of Polymer Science, 2020, 38 : 1221 - 1229
  • [8] Highly Stretchable, Compressible, Adhesive, Conductive Self-healing Composite Hydrogels with Sensor Capacity
    Wang, Ji-Jun
    Zhang, Qiang
    Ji, Xing-Xiang
    Liu, Li-Bin
    CHINESE JOURNAL OF POLYMER SCIENCE, 2020, 38 (11) : 1221 - 1229
  • [9] Highly Stretchable, Compressible, Adhesive, Conductive Self-healing Composite Hydrogels with Sensor Capacity
    Ji-Jun Wang
    Qiang Zhang
    Xing-Xiang Ji
    Li-Bin Liu
    Chinese Journal of Polymer Science, 2020, (11) : 1221 - 1229
  • [10] Self-healing, highly stretchable and self-adhesive hydrogels
    Xu, Xiubin
    Wu, Xu
    Wang, Zhengping
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256