Self-healing, adaptive and shape memory polymer-based thermal interface phase change materials via boron ester cross-linking

被引:55
作者
Huang, Yifan [1 ]
Luo, Wenxing [1 ]
Chen, Wenjing [2 ]
Hu, Xiaowu [1 ]
Zhu, Guangyu [1 ]
Ma, Yan [1 ]
Jiang, Xiongxin [1 ]
Li, Qinglin [3 ]
机构
[1] Nanchang Univ, Sch Adv Mfg, Nanchang 330031, Peoples R China
[2] Jiangxi Sci & Technol Normal Univ, Sch Mat & Energy, Nanchang 330038, Peoples R China
[3] Lanzhou Univ Technol, Sch Mat Sci & Engn, State Key Lab Adv Proc & Recycling Nonferrous Met, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal interface phase change materials; Boron ester crosslinking; Thermal management; Self -healing and adaptive; ENERGY STORAGE; COMPOSITE; PERFORMANCE; CONDUCTIVITY;
D O I
10.1016/j.cej.2024.153789
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Addressing the thermal resistance between rough interfaces without applying pressure to the interfacial sandwich has been a challenge. Herein, a thermal interface phase change material (TIPCM) is designed to realize a 3D support skeleton with a dynamic crosslinking network by introducing a boron ester crosslinking backbone into paraffin wax (PW) and ethylene-octene copolymer (EOC), thus enabling the TIPCM to ensure mechanical integrity without leakage even above the melting temperature of EOC. The chemical cross-linking between the organic solid-liquid phase change material (PCM) and the polymer realizes thermally triggered self-healing and adaptive shape memory properties. The phase transition of PW leads to a decrease in the modulus of TIPCM and activates the ester exchange of the dynamic covalent bonding of boron esters, which allows TIPCM to self-heal and self-adapt to a variety of object surfaces. These enabled the TIPCM to fill the interface gaps through small stress deformations, forming an interlocking structure that reduces contact thermal resistance and promotes heat transfer. The obtained TIPCM achieves excellent chip thermal management performance, cooling the analog CPU temperature by 67 degrees C at 5 V. In conclusion, this study provides a potential strategy for redesigning TIPCMs with high latent heat and special physical properties for thermal management.
引用
收藏
页数:9
相关论文
共 42 条
[1]   All-climate thermal management structure for batteries based on expanded graphite/polymer composite phase change material with a high thermal and electrical conductivity [J].
Cheng, Gong ;
Wang, Zhangzhou ;
Wang, Xinzhi ;
He, Yurong .
APPLIED ENERGY, 2022, 322
[2]   Preparation and thermal properties of the graphene-polyolefin adhesive composites: Application in thermal interface materials [J].
Cui, Tengfei ;
Li, Qiang ;
Xuan, Yimin ;
Zhang, Ping .
MICROELECTRONICS RELIABILITY, 2015, 55 (12) :2569-2574
[3]   A Paper-Like Inorganic Thermal Interface Material Composed of Hierarchically Structured Graphene/Silicon Carbide Nanorods [J].
Dai, Wen ;
Lv, Le ;
Lu, Jibao ;
Hou, Hao ;
Yan, Qingwei ;
Alam, Fakhr E. ;
Li, Yifan ;
Zeng, Xiaoliang ;
Yu, Jinhong ;
Wei, Qiuping ;
Xu, Xiangfan ;
Wu, Jianbo ;
Jiang, Nan ;
Du, Shiyu ;
Sun, Rong ;
Xu, Jianbin ;
Wong, Ching-Ping ;
Lin, Cheng-Te .
ACS NANO, 2019, 13 (02) :1547-1554
[4]   Synchronous Visual/Infrared Stealth Using an Intrinsically Flexible Self-Healing Phase Change Film [J].
Deng, Chengxin ;
Dong, Hongsheng ;
Sun, Keyan ;
Kou, Yan ;
Liu, Hanqing ;
Jian, Weiwei ;
Shi, Quan .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (13)
[5]   Recent advances in polymer-based thermal interface materials for thermal management: A mini-review [J].
Feng, Chang-Ping ;
Yang, Lu-Yao ;
Yang, Jie ;
Bai, Lu ;
Bao, Rui-Ying ;
Liu, Zheng-Ying ;
Yang, Ming-Bo ;
Lan, Hong-Bo ;
Yang, Wei .
COMPOSITES COMMUNICATIONS, 2020, 22
[6]   MXene based flexible composite phase change material with shape memory, self-healing and flame retardant for thermal management [J].
Gao, Shiyuan ;
Ding, Jing ;
Wang, Weilong ;
Lu, Jianfeng .
COMPOSITES SCIENCE AND TECHNOLOGY, 2023, 234
[7]   Preparation and characteristics of lauric acid-myristic acid-based ternary phase change materials for thermal storage [J].
He, Qian ;
Fei, Hua ;
Zhou, Jiahong ;
Du, Wenqing ;
Pan, Yucheng ;
Liang, Ximei .
MATERIALS TODAY COMMUNICATIONS, 2022, 32
[8]   Thermal management for multi-cores chips through microchannels completely or incompletely filled with ribs [J].
Huang, Bing-Huan ;
Mi, Chuang ;
Gong, Liang ;
Zhu, Chuan-Yong ;
Li, Kui .
CASE STUDIES IN THERMAL ENGINEERING, 2024, 54
[9]   Pouch Lithium Battery with a Passive Thermal Management System Using Form-Stable and Flexible Composite Phase Change Materials [J].
Huang, Qiqiu ;
Li, Xinxi ;
Zhang, Guoqing ;
Wang, Yongzhen ;
Deng, Jian ;
Wang, Changhong ;
Chen, Tingxi .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (02) :1978-1992
[10]   A Novel Room-Temperature Flexible Phase Change Material for Solar Energy Photothermal Conversion and Battery Thermal Management [J].
Huang, Yifan ;
Zou, Minming ;
Chen, Wenjing ;
Luo, Wenxing ;
Hu, Xiaowu ;
Zhu, Guangyu ;
Tan, Sifan ;
Jiang, Xiongxin .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (11) :4662-4675