Cyano-Hydrol green derivatives: Expanding the 9-cyanopyronin-based resonance Raman vibrational palette

被引:4
作者
Fujioka, Hiroyoshi [1 ]
Murao, Yuta [1 ]
Okinaka, Momoko [2 ]
Spratt, Spencer John [3 ]
Shou, Jingwen [4 ]
Kawatani, Minoru [1 ,5 ]
Kojima, Ryosuke [5 ]
Tachibana, Ryo [2 ]
Urano, Yasuteru [2 ,5 ]
Ozeki, Yasuyuki [3 ,4 ]
Kamiya, Mako [1 ,5 ,6 ]
机构
[1] Tokyo Inst Technol, Dept Life Sci & Technol, 4259 Nagatsuta Cho Midori Ku, Yokohama, Kanagawa 2268501, Japan
[2] Univ Tokyo, Grad Sch Pharmaceut Sci, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1130033, Japan
[3] Univ Tokyo, Res Ctr Adv Sci & Technol, 4-6-1 Komaba,Meguro Ku, Tokyo 1538904, Japan
[4] Univ Tokyo, Dept Elect Engn & Informat Syst, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
[5] Univ Tokyo, Grad Sch Med, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1130033, Japan
[6] Tokyo Inst Technol, Inst Innovat Res, Res Ctr Autonomous Syst Meterial ASMat, 4259 Nagatsuta Cho Midori Ku, Yokohama, Kanagawa 2268501, Japan
关键词
Michler 's Hydrol Blue; Resonance Raman; Stimulated Raman scattering; Spontaneous Raman scattering; Multiplex detection; STIMULATED RAMAN; PHOTOPHYSICS; SCATTERING; PROBES; BLUE;
D O I
10.1016/j.bmcl.2024.129757
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
9-cyanopyronin is a promising scaffold that exploits resonance Raman enhancement to enable sensitive, highly multiplexed biological imaging. Here, we developed cyano-Hydrol Green (CN-HG) derivatives as resonance Raman scaffolds to expand the color palette of 9-cyanopyronins. CN-HG derivatives exhibit sufficiently long wavelength absorption to produce strong resonance Raman enhancement for near-infrared (NIR) excitation, and their nitrile peaks are shifted to a lower frequency than those of 9-cyanopyronins. The fluorescence of CN-HG derivatives is strongly quenched due to the lack of the 10th atom, unlike pyronin derivatives, and this enabled us to detect spontaneous Raman spectra with high signal -to -noise ratios. CN-HG derivatives are powerful candidates for high performance vibrational imaging.
引用
收藏
页数:6
相关论文
共 29 条
[1]   A decade of alkyne-tag Raman imaging (ATRI): applications in biological systems [J].
Bakthavatsalam, Subha ;
Dodo, Kosuke ;
Sodeoka, Mikiko .
RSC CHEMICAL BIOLOGY, 2021, 2 (05) :1415-1429
[2]   THEORETICAL AND EXPERIMENTAL-STUDY OF THE ELECTRONIC-SPECTRUM AND PHOTOPHYSICS OF MICHLER HYDROL BLUE [J].
BARALDI, I ;
CARNEVALI, A ;
MOMICCHIOLI, F ;
PONTERINI, G .
CHEMICAL PHYSICS, 1992, 160 (01) :85-96
[3]   Raman Spectroscopy for Chemical Biology Research [J].
Dodo, Kosuke ;
Fujita, Katsumasa ;
Sodeoka, Mikiko .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (43) :19651-19667
[4]   Bringing Vibrational Imaging to Chemical Biology with Molecular Probes [J].
Du, Jiajun ;
Wang, Haomin ;
Wei, Lu .
ACS CHEMICAL BIOLOGY, 2022, 17 (07) :1621-1637
[5]   Activatable Raman Probes Utilizing Enzyme-Induced Aggregate Formation for Selective Ex Vivo Imaging [J].
Fujioka, Hiroyoshi ;
Kawatani, Minoru ;
Spratt, Spencer John ;
Komazawa, Ayumi ;
Misawa, Yoshihiro ;
Shou, Jingwen ;
Mizuguchi, Takaha ;
Kosakamoto, Hina ;
Kojima, Ryosuke ;
Urano, Yasuteru ;
Obata, Fumiaki ;
Ozeki, Yasuyuki ;
Kamiya, Mako .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (16) :8871-8881
[6]   Multicolor Activatable Raman Probes for Simultaneous Detection of Plural Enzyme Activities [J].
Fujioka, Hiroyoshi ;
Shou, Jingwen ;
Kojima, Ryosuke ;
Urano, Yasuteru ;
Ozeki, Yasuyuki ;
Kamiya, Mako .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (49) :20701-20707
[7]   Biological imaging of chemical bonds by stimulated Raman scattering microscopy [J].
Hu, Fanghao ;
Shi, Lixue ;
Min, Wei .
NATURE METHODS, 2019, 16 (09) :830-842
[8]  
Hu FH, 2018, NAT METHODS, V15, P194, DOI [10.1038/NMETH.4578, 10.1038/nmeth.4578]
[9]   Michler's Hydrol Blue: A Sensitive Probe for Amyloid Fibril Detection [J].
Kitts, Catherine C. ;
Beke-Somfai, Tamas ;
Norden, Bengt .
BIOCHEMISTRY, 2011, 50 (17) :3451-3461
[10]   Recent advances in MOF-bio-interface: a review [J].
Li, Yingfeng ;
Wang, Ru ;
Liu, Xue ;
Li, Ke ;
Xu, Qing .
NANOTECHNOLOGY, 2023, 34 (20)