From Mn3O4 3 O 4 thin film towards MnO2: 2: Surface reactivity and the role of O2 2 and H2O 2 O exposures investigated by X-ray Photoelectron Spectroscopy at Near-Ambient Pressure

被引:2
作者
Annese, E. [1 ]
Stavale, F. [1 ]
机构
[1] Brazilian Ctr Res Phys, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil
关键词
Manganese oxide; Surface reactivity; NAP-XPS; WATER OXIDATION; OXIDES; XPS; BIRNESSITE; EVOLUTION; POLYMORPHS; MECHANISM; VACANCY;
D O I
10.1016/j.apsusc.2024.160710
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
MnO2 2 phase of manganese oxide was identified as the final product of a multiple steps reaction in near ambient pressure-X-ray photoemission (NAP-XPS) chamber. At the first stage of the reaction, an intermediate stable manganese hydroxide film was obtained at similar to 400 degrees C in presence of p(O2) 2 ) and p(H2O) 2 O) and verified by the formation of sizeable hydroxide peak, OH, at binding energy 531.4 (1) eV. The Mn hydroxide film is kept unaltered even when is subsequently exposed to p(O2)= 2 )= 2 mbar at similar to 450 degrees C, and it is modified into S-MnO2 2 phase at similar to 480 degrees C when p(O2) 2 ) pressure is suddenly reduced to below 10-9 -9 mbar. Thus, the OH spectral feature becomes the main signature in O 1s core level spectral regions and a Mn4+ 4+ related feature is identified in Mn 2p energy range. The multiple step reaction follows the proposed mechanism for the MnO2 2 formation in electrolytic cell and it is the first observation in a controlled way in NAP-XPS chamber. The findings open new roots for the birnessite manganese oxide phase formation and its manipulation.
引用
收藏
页数:8
相关论文
共 50 条
[42]   The Importance of NO+(H2O)4 in the Conversion of NO+(H2O)n to H3O+(H2O)n: I. Kinetics Measurements and Statistical Rate Modeling [J].
Eyet, Nicole ;
Shuman, Nicholas S. ;
Viggiano, Albert A. ;
Troe, Juergen ;
Relph, Rachael A. ;
Steele, Ryan P. ;
Johnson, Mark A. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (26) :7582-7590
[43]   Thermal stability of [Mn(III)(O)2Mn(IV)(H2O)2(Terpy)2](NO3)3 (Terpy=2,2′:6′,2"-terpyridine) in aqueous solution [J].
Zhang, Fan ;
Cady, Clyde W. ;
Brudvig, Gary W. ;
Hou, Harvey J. M. .
INORGANICA CHIMICA ACTA, 2011, 366 (01) :128-133
[44]   Interaction and kinetics of H2, CO2, and H2O on Ti3C2Tx MXene probed by X-ray photoelectron spectroscopy [J].
Naslund, Lars-Ake ;
Kokkonen, Esko ;
Magnuson, Martin .
APPLIED SURFACE SCIENCE, 2025, 684
[45]   Impedance and admittance spectroscopy of Mn3O4-doped ZnO incorporated with Sb2O3 and Bi2O3 [J].
Hong, YW ;
Kim, JH .
CERAMICS INTERNATIONAL, 2004, 30 (07) :1307-1311
[46]   Water oxidation catalysis via immobilization of the dimanganese complex [Mn2(μ-O)2Cl(μ-O2CCH3)-(bpy)2(H2O)](NO3)2 onto silica [J].
Rumberger, Evan M. W. ;
Ahn, Hyun S. ;
Bell, Alexis T. ;
Tilley, T. Don .
DALTON TRANSACTIONS, 2013, 42 (34) :12238-12247
[47]   Magnetic Manganese-Based Micromotors MnFe2O4@Fe3O4/graphite and Mn2O3@Fe2O3@Fe3O4/graphite for Organic Pollutant Degradation [J].
Kichatov, Boris ;
Korshunov, Alexey ;
Sudakov, Vladimir ;
Golubkov, Alexandr ;
Smovzh, Dmitriy ;
Sakhapov, Salavat ;
Skirda, Mikhail .
ADVANCED SUSTAINABLE SYSTEMS, 2023, 7 (12)
[48]   Bonding MnO2/Fe3O4 Shell-Core Nanostructures to Catalyze H2O2 Degrading Organic Dyes [J].
Zhang, Shu ;
Wang, Shulin ;
Li, Shengjuan .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (09) :5612-5617
[49]   X-ray Diffraction Study on Restacked Flocculates from Binary Colloidal Nanosheet Systems Ti0.91O2-MnO2, Ca2Nb3O10-Ti0.91O2, and Ca2Nb3O10-MnO2 [J].
Onoda, Mitsuko ;
Liu, Zhaoping ;
Ebina, Yasuo ;
Takada, Kazunori ;
Sasaki, Takayoshi .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (17) :8555-8566
[50]   Well-defined synthesis of crystalline MnO, Mn2O3, and Mn3O4 phases by anodic electrodeposition and calcination [J].
Cestaro, Roberto ;
Rheingans, Bastian ;
Schweizer, Peter ;
Muller, Arnold ;
Vockenhuber, Christof ;
Cancellieri, Claudia ;
Jeurgens, Lars P. H. ;
Schmutz, Patrik .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, 107 (12) :8676-8690