Bayesian Spatio-Temporal Modeling of the Dynamics of COVID-19 Deaths in Peru

被引:2
作者
Galarza, Cesar Raul Castro [1 ]
Sanchez, Omar Nolberto Diaz [1 ]
Pimentel, Jonatha Sousa [2 ]
Bulhoes, Rodrigo [3 ]
Lopez-Gonzales, Javier Linkolk [1 ]
Rodrigues, Paulo Canas [3 ]
机构
[1] Univ Peruana Union, Escuela Posgrad, Lima 15468, Peru
[2] Univ Fed Pernambuco, Dept Stat, BR-50740540 Recife, PE, Brazil
[3] Univ Fed Bahia, Dept Stat, BR-40170110 Salvador, BA, Brazil
关键词
COVID-19; spatio-temporal modeling; areal unit data; spatio-temporal generalized linear model; Bayesian statistics;
D O I
10.3390/e26060474
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Amid the COVID-19 pandemic, understanding the spatial and temporal dynamics of the disease is crucial for effective public health interventions. This study aims to analyze COVID-19 data in Peru using a Bayesian spatio-temporal generalized linear model to elucidate mortality patterns and assess the impact of vaccination efforts. Leveraging data from 194 provinces over 651 days, our analysis reveals heterogeneous spatial and temporal patterns in COVID-19 mortality rates. Higher vaccination coverage is associated with reduced mortality rates, emphasizing the importance of vaccination in mitigating the pandemic's impact. The findings underscore the value of spatio-temporal data analysis in understanding disease dynamics and guiding targeted public health interventions.
引用
收藏
页数:13
相关论文
共 35 条
[11]   Towards effective COVID-19 vaccines: Updates, perspectives and challenges (Review) [J].
Calina, Daniela ;
Docea, Anca Oana ;
Petrakis, Demetrios ;
Egorov, Alex M. ;
Ishmukhametov, Aydar A. ;
Gabibov, Alexsandr G. ;
Shtilman, Michael, I ;
Kostoff, Ronald ;
Carvalho, Felix ;
Vinceti, Marco ;
Spandidos, Demetrios A. ;
Tsatsakis, Aristidis .
INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2020, 46 (01) :3-16
[12]   The COVID-19 pandemic [J].
Ciotti, Marco ;
Ciccozzi, Massimo ;
Terrinoni, Alessandro ;
Jiang, Wen-Can ;
Wang, Cheng-Bin ;
Bernardini, Sergio .
CRITICAL REVIEWS IN CLINICAL LABORATORY SCIENCES, 2020, 57 (06) :365-388
[13]   Estimation of the incubation period of COVID-19 using viral load data [J].
Ejima, Keisuke ;
Kim, Kwang Su ;
Ludema, Christina ;
Bento, Ana, I ;
Iwanami, Shoya ;
Fujita, Yasuhisa ;
Ohashi, Hirofumi ;
Koizumi, Yoshiki ;
Watashi, Koichi ;
Aihara, Kazuyuki ;
Nishiura, Hiroshi ;
Iwami, Shingo .
EPIDEMICS, 2021, 35
[14]   Spatio-temporal predictive modeling framework for infectious disease spread [J].
Ganesan, Sashikumaar ;
Subramani, Deepak .
SCIENTIFIC REPORTS, 2021, 11 (01)
[15]  
Geweke J., 1992, Bayesian Statistics 4, V4, P169
[16]   Risk clusters of COVID-19 transmission in northeastern Brazil: prospective space-time modelling [J].
Gomes, D. S. ;
Andrade, L. A. ;
Ribeiro, C. J. N. ;
Peixoto, M. V. S. ;
Lima, S. V. M. A. ;
Duque, A. M. ;
Cirilo, T. M. ;
Goes, M. A. O. ;
Lima, A. G. C. F. ;
Santos, M. B. ;
Araujo, K. C. G. M. ;
Santos, A. D. .
EPIDEMIOLOGY AND INFECTION, 2020, 148
[17]   Spatial-temporal modeling of initial COVID-19 diffusion: The cases of the Chinese Mainland and Conterminous United States [J].
Griffith, Daniel ;
Li, Bin .
GEO-SPATIAL INFORMATION SCIENCE, 2021, 24 (03) :340-362
[18]  
Karlinsky Ariel, 2021, Elife, V10, DOI [10.1101/2021.01.27.21250604, 10.7554/eLife.69336]
[19]   The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application [J].
Lauer, Stephen A. ;
Grantz, Kyra H. ;
Bi, Qifang ;
Jones, Forrest K. ;
Zheng, Qulu ;
Meredith, Hannah R. ;
Azman, Andrew S. ;
Reich, Nicholas G. ;
Lessler, Justin .
ANNALS OF INTERNAL MEDICINE, 2020, 172 (09) :577-+
[20]   A spatio-temporal approach to estimate patterns of climate change [J].
Laurini, M. P. .
ENVIRONMETRICS, 2019, 30 (01)