Existence and ergodicity for the two-dimensional stochastic Allen-Cahn-Navier-Stokes equations

被引:0
作者
Ngana, Aristide Ndongmo [1 ,2 ]
Medjo, Theodore Tachim [3 ]
机构
[1] Univ Dschang, Dept Math & Comp Sci, POB 67, Dschang, Cameroon
[2] North West Univ, Sch Math & Stat Sci, Potchefstroom, South Africa
[3] Florida Int Univ, Dept Math & Stat, MMC, Miami, FL 33199 USA
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2024年 / 43卷 / 1-2期
关键词
stochastic; Allen-Cahn; Navier-Stokes equations; invariant measure; coupling; ergodicity; BOUSSINESQ EQUATIONS; UNIQUE STRONG; ATTRACTORS; MODEL;
D O I
10.4171/ZAA/1752
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study in this article a stochastic version of a coupled Allen-Cahn-Navier-Stokes model in a two-dimensional bounded domain. The model consists of the Navier-Stokes equations for the velocity, coupled with an Allen-Cahn model for the order (phase) parameter, both endowed with suitable boundary conditions. We prove the existence of solutions via a semigroup approach. We also obtain the existence and uniqueness of an invariant measure via coupling methods.
引用
收藏
页码:1 / 48
页数:48
相关论文
共 30 条
[1]   Diffuse-interface methods in fluid mechanics [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :139-165
[2]   Existence and ergodicity for the two-dimensional stochastic magneto-hydrodynamics equations [J].
Barbu, Viorel ;
Da Prato, Giuseppe .
APPLIED MATHEMATICS AND OPTIMIZATION, 2007, 56 (02) :145-168
[3]   Invariant Measures for Stochastic Damped 2D Euler Equations [J].
Bessaih, Hakima ;
Ferrario, Benedetta .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 377 (01) :531-549
[4]   A generalization of the Navier-Stokes equations to two-phase flows [J].
Blesgen, T .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1999, 32 (10) :1119-1123
[5]  
Brezis H, 2011, UNIVERSITEXT, P1
[6]   INVARIANT MEASURE FOR THE STOCHASTIC NAVIER-STOKES EQUATIONS IN UNBOUNDED 2D DOMAINS [J].
Brzeniak, Zdzislaw ;
Motyl, Elzbieta ;
Ondrejat, Martin .
ANNALS OF PROBABILITY, 2017, 45 (05) :3145-3201
[7]   2D stochastic Navier-Stokes equations driven by jump noise [J].
Brzezniak, Zdzislaw ;
Hausenblas, Erika ;
Zhu, Jiahui .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 79 :122-139
[8]  
CAGINALP G, 1986, ARCH RATION MECH AN, V92, P205
[9]  
Caraballo T, 2006, ADV NONLINEAR STUD, V6, P411
[10]  
Da Prato G., 1996, ERGODICITY INFINITE, V229, DOI DOI 10.1017/CBO9780511662829