Deep Learning for Retina Structural Biomarker Classification Using OCT Images

被引:0
作者
Xu, Chi [1 ]
Zheng, Huizhong [1 ]
Liu, Keyi [1 ]
Chen, Yanming [1 ]
Ye, Chen [1 ]
Niu, Chenxi [1 ]
Jin, Shengji [1 ]
Li, Yue [1 ]
Gao, Haowei [1 ]
Hu, Jingxi [1 ]
Zou, Yuanhao [1 ]
He, Xiangjian [1 ]
机构
[1] Univ Nottingham, Ningbo, Peoples R China
来源
INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY, IWAIT 2024 | 2024年 / 13164卷
关键词
Deep Learning; Retinal OCT; Multi-task Learning; Multi-modal Learning; Biomarker analysis;
D O I
10.1117/12.3026739
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study presents an approach to identifying retinal structural biomarkers in ophthalmology, which is essential for accurate diagnosis and effective treatment of eye diseases. We develop a multi-modal, multi-task deep learning framework that integrates supervised and semi-supervised training methods. This model effectively processes a combination of 3D Optical Coherence Tomography (OCT) images and one-dimensional clinical data. A key advancement is introducing a custom post-processing method that significantly improves the precision of biomarker detection. Our model successfully identifies six distinct biomarkers in the retina and achieves a notable macro f1-score of 71.62%, representing a substantial 14.48% improvement over the baseline performance. This advancement underscores the potential of deep learning in enhancing diagnostic accuracy and treatment efficacy in ophthalmology.
引用
收藏
页数:6
相关论文
共 19 条
[1]  
AlRegib G., 2023 ieee sps video and image processing (vip) cup
[2]  
Bandello F, 2019, Clinical strategies in the management of diabetic retinopathy: a step-by-step guide for ophthalmologists Internet, P97, DOI [10.1007/978- 3-319-96157-6_3, DOI 10.1007/978-3-319-96157-6_3]
[3]   A review of the application of deep learning in medical image classification and segmentation [J].
Cai, Lei ;
Gao, Jingyang ;
Zhao, Di .
ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (11)
[4]  
Cheung CYL, 2021, INVEST OPHTH VIS SCI, V62
[5]   Deep learning approach for diabetic retinopathy screening [J].
Colas, E. ;
Besse, A. ;
Orgogozo, A. ;
Schmauch, B. ;
Meric, N. ;
Besse, E. .
ACTA OPHTHALMOLOGICA, 2016, 94
[6]  
Crawshaw M., 2020, arXiv, DOI [10.48550/arXiv.2009.09796, DOI 10.48550/ARXIV.2009.09796]
[7]   A Survey on Deep Learning for Multimodal Data Fusion [J].
Gao, Jing ;
Li, Peng ;
Chen, Zhikui ;
Zhang, Jianing .
NEURAL COMPUTATION, 2020, 32 (05) :829-864
[8]   Detection of Diabetic Retinopathy Based on a Convolutional Neural Network Using Retinal Fundus Images [J].
Garcia, Gabriel ;
Gallardo, Jhair ;
Mauricio, Antoni ;
Lopez, Jorge ;
Del Carpio, Christian .
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 :635-642
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   A Survey on Contrastive Self-Supervised Learning [J].
Jaiswal, Ashish ;
Babu, Ashwin Ramesh ;
Zadeh, Mohammad Zaki ;
Banerjee, Debapriya ;
Makedon, Fillia .
TECHNOLOGIES, 2021, 9 (01)