Penrose method for Kuramoto model with inertia and noise

被引:0
作者
Alexandrov, Artem [1 ,2 ]
Gorsky, Alexander [2 ,3 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[2] Inst Informat Transmiss Problems, Moscow 127994, Russia
[3] Ctr Neurophys & Neuromorph Technol, Lab Complex Networks, Moscow, Russia
关键词
Synchronization; Kuramoto model; Noise; Bifurcations; Phase transitions; Graphons; MEAN-FIELD ANALYSIS; COUPLED OSCILLATORS; STABILITY; BIFURCATION; SYSTEMS;
D O I
10.1016/j.chaos.2024.114938
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Penrose method of instability analysis, we consider the synchronization transition in the Kuramoto model with inertia and noise with all -to -all couplings. Analyzing the Penrose curves, we identify the appearance of cluster and chimera states in the presence of noise. We observe that noise can destroy chimera and biclusters states. The critical coupling describing bifurcation from incoherent to coherent state is found analytically. To confirm our propositions based on the Penrose method, we perform numerical simulations.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Synchronization of Kuramoto model in a high-dimensional linear space [J].
Zhu, Jiandong .
PHYSICS LETTERS A, 2013, 377 (41) :2939-2943
[32]   Structure preserving schemes for the continuum Kuramoto model: Phase transitions [J].
Carrillo, Jose A. ;
Choi, Young-Pil ;
Pareschi, Lorenzo .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 :365-389
[33]   Stability in the Kuramoto–Sakaguchi model for finite networks of identical oscillators [J].
Antonio Mihara ;
Rene O. Medrano-T .
Nonlinear Dynamics, 2019, 98 :539-550
[34]   The Kuramoto model on dynamic random graphs [J].
Groisman, Pablo ;
Huang, Ruojun ;
Vivas, Hernan .
NONLINEARITY, 2023, 36 (11) :6177-6198
[35]   A Matrix-Valued Kuramoto Model [J].
Bronski, Jared C. ;
Carty, Thomas E. ;
Simpson, Sarah E. .
JOURNAL OF STATISTICAL PHYSICS, 2020, 178 (02) :595-624
[36]   GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF MEASURE VALUED SOLUTIONS TO THE KINETIC KURAMOTO-DAIDO MODEL WITH INERTIA [J].
Choi, Young-Pil ;
Ha, Seung-Yeal ;
Yun, Seok-Bae .
NETWORKS AND HETEROGENEOUS MEDIA, 2013, 8 (04) :943-968
[37]   A DIFFUSION LIMIT FOR THE PARABOLIC KURAMOTO-SAKAGUCHI EQUATION WITH INERTIA [J].
Ha, Seung-Yeal ;
Shim, Woojoo ;
Zhang, Yinglong .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) :1591-1638
[38]   Interplay of inertia and adaptive couplings in the emergent dynamics of Kuramoto ensemble [J].
Cho, Hangjun ;
Dong, Jiu-Gang ;
Ha, Seung-Yeal .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 360 :523-571
[39]   Stochastic Kuramoto oscillators with inertia and higher-order interactions [J].
Rajwani, Priyanka ;
Jalan, Sarika .
PHYSICAL REVIEW E, 2025, 111 (01)
[40]   Earthquake sequencing: chimera states with Kuramoto model dynamics on directed graphs [J].
Vasudevan, K. ;
Cavers, M. ;
Ware, A. .
NONLINEAR PROCESSES IN GEOPHYSICS, 2015, 22 (05) :499-512