Penrose method for Kuramoto model with inertia and noise

被引:0
作者
Alexandrov, Artem [1 ,2 ]
Gorsky, Alexander [2 ,3 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[2] Inst Informat Transmiss Problems, Moscow 127994, Russia
[3] Ctr Neurophys & Neuromorph Technol, Lab Complex Networks, Moscow, Russia
关键词
Synchronization; Kuramoto model; Noise; Bifurcations; Phase transitions; Graphons; MEAN-FIELD ANALYSIS; COUPLED OSCILLATORS; STABILITY; BIFURCATION; SYSTEMS;
D O I
10.1016/j.chaos.2024.114938
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Penrose method of instability analysis, we consider the synchronization transition in the Kuramoto model with inertia and noise with all -to -all couplings. Analyzing the Penrose curves, we identify the appearance of cluster and chimera states in the presence of noise. We observe that noise can destroy chimera and biclusters states. The critical coupling describing bifurcation from incoherent to coherent state is found analytically. To confirm our propositions based on the Penrose method, we perform numerical simulations.
引用
收藏
页数:9
相关论文
共 50 条
[1]   Bifurcations and Patterns in the Kuramoto Model with Inertia [J].
Chiba, Hayato ;
Medvedev, Georgi S. ;
Mizuhara, Matthew S. .
JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (05)
[2]   Bifurcations and Patterns in the Kuramoto Model with Inertia [J].
Hayato Chiba ;
Georgi S. Medvedev ;
Matthew S. Mizuhara .
Journal of Nonlinear Science, 2023, 33
[3]   STABILITY AND BIFURCATION OF MIXING IN THE KURAMOTO MODEL WITH INERTIA [J].
Chiba, Hayato ;
Medvedev, Georgi S. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (02) :1797-1819
[4]   Hysteretic transitions in the Kuramoto model with inertia [J].
Olmi, Simona ;
Navas, Adrian ;
Boccaletti, Stefano ;
Torcini, Alessandro .
PHYSICAL REVIEW E, 2014, 90 (04)
[5]   Synchronization of Kuramoto oscillators with the distributed time-delays and inertia effect [J].
Hsia, Chun-Hsiung ;
Jung, Chang-Yeol ;
Kwon, Bongsuk ;
Moon, Sunghwan .
APPLICABLE ANALYSIS, 2023, 102 (15) :4330-4349
[6]   REMARKS ON THE NONLINEAR STABILITY OF THE KURAMOTO MODEL WITH INERTIA [J].
Choi, Young-Pil ;
Ha, Seung-Yeal ;
Noh, Se Eun .
QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (02) :391-399
[7]   Cardinality of Collisions in Asymptotic Phase-Locking for the Kuramoto Model with Inertia [J].
Cho, Hangjun ;
Dong, Jiu-Gang ;
Ha, Seung-Yeal .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (02) :1472-1501
[8]   The mathematics of asymptotic stability in the Kuramoto model [J].
Dietert, Helge ;
Fernandez, Bastien .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2220)
[9]   Complete synchronization of Kuramoto oscillators with finite inertia [J].
Choi, Young-Pit ;
Ha, Seung-Yeal ;
Yun, Seok-Bae .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (01) :32-44
[10]   Synchronization Estimate of the Discrete Kuramoto Model with Multiplicative Random Noise [J].
Shim, Woojoo .
KYUNGPOOK MATHEMATICAL JOURNAL, 2024, 64 (04) :559-578