Penrose method for Kuramoto model with inertia and noise

被引:0
|
作者
Alexandrov, Artem [1 ,2 ]
Gorsky, Alexander [2 ,3 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[2] Inst Informat Transmiss Problems, Moscow 127994, Russia
[3] Ctr Neurophys & Neuromorph Technol, Lab Complex Networks, Moscow, Russia
关键词
Synchronization; Kuramoto model; Noise; Bifurcations; Phase transitions; Graphons; MEAN-FIELD ANALYSIS; COUPLED OSCILLATORS; STABILITY; BIFURCATION; SYSTEMS;
D O I
10.1016/j.chaos.2024.114938
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Penrose method of instability analysis, we consider the synchronization transition in the Kuramoto model with inertia and noise with all -to -all couplings. Analyzing the Penrose curves, we identify the appearance of cluster and chimera states in the presence of noise. We observe that noise can destroy chimera and biclusters states. The critical coupling describing bifurcation from incoherent to coherent state is found analytically. To confirm our propositions based on the Penrose method, we perform numerical simulations.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Bifurcations and Patterns in the Kuramoto Model with Inertia
    Chiba, Hayato
    Medvedev, Georgi S.
    Mizuhara, Matthew S.
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (05)
  • [2] Bifurcations and Patterns in the Kuramoto Model with Inertia
    Hayato Chiba
    Georgi S. Medvedev
    Matthew S. Mizuhara
    Journal of Nonlinear Science, 2023, 33
  • [3] STABILITY AND BIFURCATION OF MIXING IN THE KURAMOTO MODEL WITH INERTIA
    Chiba, Hayato
    Medvedev, Georgi S.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (02) : 1797 - 1819
  • [4] Hysteretic transitions in the Kuramoto model with inertia
    Olmi, Simona
    Navas, Adrian
    Boccaletti, Stefano
    Torcini, Alessandro
    PHYSICAL REVIEW E, 2014, 90 (04):
  • [5] Synchronization of Kuramoto oscillators with the distributed time-delays and inertia effect
    Hsia, Chun-Hsiung
    Jung, Chang-Yeol
    Kwon, Bongsuk
    Moon, Sunghwan
    APPLICABLE ANALYSIS, 2023, 102 (15) : 4330 - 4349
  • [6] REMARKS ON THE NONLINEAR STABILITY OF THE KURAMOTO MODEL WITH INERTIA
    Choi, Young-Pil
    Ha, Seung-Yeal
    Noh, Se Eun
    QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (02) : 391 - 399
  • [7] Cardinality of Collisions in Asymptotic Phase-Locking for the Kuramoto Model with Inertia
    Cho, Hangjun
    Dong, Jiu-Gang
    Ha, Seung-Yeal
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (02) : 1472 - 1501
  • [8] The mathematics of asymptotic stability in the Kuramoto model
    Dietert, Helge
    Fernandez, Bastien
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2220):
  • [9] Complete synchronization of Kuramoto oscillators with finite inertia
    Choi, Young-Pit
    Ha, Seung-Yeal
    Yun, Seok-Bae
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (01) : 32 - 44
  • [10] Synchronization Estimate of the Discrete Kuramoto Model with Multiplicative Random Noise
    Shim, Woojoo
    KYUNGPOOK MATHEMATICAL JOURNAL, 2024, 64 (04): : 559 - 578