A New Intelligent Reflecting Surface-Aided Electromagnetic Stealth Strategy

被引:5
|
作者
Xiong, Xue [1 ,2 ]
Zheng, Beixiong [3 ]
Swindlehurst, A. Lee [3 ]
Tang, Jie [4 ]
Wu, Wen [2 ]
机构
[1] South China Univ Technol, Sch Future Technol, Guangzhou 511442, Peoples R China
[2] Peng Cheng Lab, Frontier Res Ctr, Shenzhen 518055, Peoples R China
[3] South China Univ Technol, Sch Microelect, Guangzhou 511442, Peoples R China
[4] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Electromagnetic wave absorbing material (EWAM); intelligent reflecting surface (IRS); radar detection; Karush-Kuhn-Tucker (KKT) conditions;
D O I
10.1109/LWC.2024.3378455
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electromagnetic wave absorbing material (EWAM) plays an essential role in manufacturing stealth aircraft, which can achieve the electromagnetic stealth (ES) by reducing the strength of the signal reflected back to the radar system. However, the stealth performance is limited by the coating thickness, incident wave angles, and working frequencies. To tackle these limitations, we propose a new intelligent reflecting surface (IRS)-aided ES system where an IRS is deployed at the target to synergize with EWAM for effectively mitigating the echo signal and thus reducing the radar detection probability. Considering the monotonic relationship between the detection probability and the received signal-to-noise-ratio (SNR) at the radar, we formulate an optimization problem that minimizes the SNR under the reflection constraint of each IRS element, and a semi-closed-form solution is derived by using Karush-Kuhn-Tucker (KKT) conditions. Simulation results validate the superiority of the proposed IRS-aided ES system compared to various benchmarks.
引用
收藏
页码:1498 / 1502
页数:5
相关论文
共 50 条
  • [11] Intelligent Reflecting Surface-Aided URLLC in a Factory Automation Scenario
    Ren, Hong
    Wang, Kezhi
    Pan, Cunhua
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (01) : 707 - 723
  • [12] Channel reconfiguration for intelligent reflecting surface-aided vehicular networks
    Wang, Ruyan
    Wang, Kang
    Cui, Yaping
    He, Peng
    Wu, Dapeng
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2023, 34 (12)
  • [13] Intelligent Reflecting Surface-Aided Covert Ambient Backscatter Communication
    Liu, Jiahao
    Yu, Jihong
    Zhang, Rongrong
    Wang, Shuai
    Yang, Kai
    An, Jianping
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (06) : 3558 - 3571
  • [14] Intelligent reflecting surface-aided MIMO secrecy rate maximization
    Kim, Minsik
    Park, Daeyoung
    ICT EXPRESS, 2022, 8 (04): : 518 - 524
  • [15] Secure Intelligent Reflecting Surface-Aided Integrated Sensing and Communication
    Hua, Meng
    Wu, Qingqing
    Chen, Wen
    Dobre, Octavia A.
    Swindlehurst, A. Lee
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (01) : 575 - 591
  • [16] Beamforming Optimization for Active Intelligent Reflecting Surface-Aided SWIPT
    Gao, Ying
    Wu, Qingqing
    Zhang, Guangchi
    Chen, Wen
    Ng, Derrick Wing Kwan
    Di Renzo, Marco
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (01) : 362 - 378
  • [17] Secure Transmission for Intelligent Reflecting Surface-Aided Communication System
    Wei, Yuxin
    Guo, Li
    Dong, Chao
    Mu, Xidong
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE WORKSHOPS (WCNCW), 2021,
  • [18] Intelligent Reflecting Surface-Aided Wireless Communication With Movable Elements
    Hu, Guojie
    Wu, Qingqing
    Xu, Donghui
    Xu, Kui
    Si, Jiangbo
    Cai, Yunlong
    Al-Dhahir, Naofal
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (04) : 1173 - 1177
  • [19] Performance Analysis of Aerial Intelligent Reflecting Surface-Aided Networks
    Zhong, Mingzhe
    Zhang, Hongtao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (10) : 15878 - 15882
  • [20] Intelligent Mixed Reflecting/Relaying Surface-Aided Secure Wireless Communications
    Zhang, Shibo
    Gao, Hongyuan
    Su, Yumeng
    Cheng, Jianhua
    Jo, Minho
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (01) : 532 - 543