Periodic orbits and non-existence of C1 first integrals for analytic differential systems exhibiting a zero-Hopf bifurcation in R4
被引:0
作者:
Llibre, Jaume
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, SpainUniv Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, Spain
Llibre, Jaume
[1
]
Tian, Renhao
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai Campus, Zhuhai 519082, Peoples R ChinaUniv Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, Spain
Tian, Renhao
[2
]
机构:
[1] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, Spain
[2] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai Campus, Zhuhai 519082, Peoples R China
Analytic differential systems;
Zero-Hopf bifurcation;
Periodic orbits;
Characteristic multipliers;
Non-existence of C-1 first integral;
AVERAGING THEORY;
ORDER;
D O I:
10.1007/s12215-024-01074-8
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper we investigate a particular case of a zero-Hopf bifurcation of a four dimensional analytic differential system. We prove that at most five periodic orbits bifurcate from the zero-Hopf equilibrium using the averaging theory of first order and give a specific example to illustrate this conclusion. Moreover we prove the non-existence of C-1 first integrals in a neighbourhood of these periodic orbits.