Dissipative feedback switching for quantum stabilization

被引:4
作者
Liang, Weichao [1 ]
Grigoletto, Tommaso [1 ]
Ticozzi, Francesco [1 ]
机构
[1] Univ Padua, Dept Informat Engn, 6B Via Gradenigo, I-35131 Padua, Italy
关键词
Switched system; Quantum entanglement; Stability analysis; Stochastic processes; Lyapunov methods; STABILITY; SYSTEMS;
D O I
10.1016/j.automatica.2024.111659
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Switching controlled dynamics allows for fast, flexible control design methods for quantum stabilization of pure states and subspaces, which naturally include both Hamiltonian and dissipative control actions. A novel approach to measurement-based, dissipative feedback design is introduced, and extends the applicability of switching techniques with respect to previously proposed ones, as it does not need stringent invariance assumptions, while it still avoids undesired chattering or Zeno effects by modulating the control intensity. When the switching dynamics do leave the target invariant, on the other hand, we show that exponential convergence to the target can be enforced without modulation, and switching times that can be either fixed or stochastic with hysteresis to avoid chattering. The effectiveness of the proposed methods is illustrated via numerical simulations of simple yet paradigmatic examples, demonstrating how switching strategies converge faster than open-loop engineered dissipation. (c) 2024 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 39 条
[11]   SPECTRAL PROPERTIES OF POSITIVE MAPS ON CSTAR-ALGEBRAS [J].
EVANS, DE ;
HOEGHKROHN, R .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1978, 17 (APR) :345-355
[12]   Non-smooth Lyapunov function-based global stabilization for quantum filters [J].
Ge, Shuzhi Sam ;
Thanh Long Vu ;
Hang, Chang Chieh .
AUTOMATICA, 2012, 48 (06) :1031-1044
[13]   Stabilization Via Feedback Switching for Quantum Stochastic Dynamics [J].
Grigoletto, Tommaso ;
Ticozzi, Francesco .
IEEE CONTROL SYSTEMS LETTERS, 2022, 6 :235-240
[14]  
Hale J. K., 1980, Ordinary Differential Equations
[15]   QUANTUM ITOS FORMULA AND STOCHASTIC EVOLUTIONS [J].
HUDSON, RL ;
PARTHASARATHY, KR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 93 (03) :301-323
[16]   Control of Quantum Systems Despite Feedback Delay [J].
Kashima, Kenji ;
Yamamoto, Naoki .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (04) :876-881
[17]  
Khasminskii R, 2012, STOCH MOD APPL PROBA, V66, P265, DOI 10.1007/978-3-642-23280-0
[18]   Feedback Exponential Stabilization of GHZ States of Multiqubit Systems [J].
Liang, Weichao ;
Amini, Nina H. ;
Mason, Paolo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (06) :2918-2929
[19]   ROBUST FEEDBACK STABILIZATION OF N-LEVEL QUANTUM SPIN SYSTEMS [J].
Liang, Weichao ;
Amini, Nina H. ;
Mason, Paolo .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (01) :669-692
[20]   ON EXPONENTIAL STABILIZATION OF N-LEVEL QUANTUM ANGULAR MOMENTUM SYSTEMS [J].
Liang, Weichao ;
Amini, Nina H. ;
Mason, Paolo .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (06) :3939-3960