Dissipative feedback switching for quantum stabilization

被引:2
作者
Liang, Weichao [1 ]
Grigoletto, Tommaso [1 ]
Ticozzi, Francesco [1 ]
机构
[1] Univ Padua, Dept Informat Engn, 6B Via Gradenigo, I-35131 Padua, Italy
关键词
Switched system; Quantum entanglement; Stability analysis; Stochastic processes; Lyapunov methods; STABILITY; SYSTEMS;
D O I
10.1016/j.automatica.2024.111659
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Switching controlled dynamics allows for fast, flexible control design methods for quantum stabilization of pure states and subspaces, which naturally include both Hamiltonian and dissipative control actions. A novel approach to measurement-based, dissipative feedback design is introduced, and extends the applicability of switching techniques with respect to previously proposed ones, as it does not need stringent invariance assumptions, while it still avoids undesired chattering or Zeno effects by modulating the control intensity. When the switching dynamics do leave the target invariant, on the other hand, we show that exponential convergence to the target can be enforced without modulation, and switching times that can be either fixed or stochastic with hysteresis to avoid chattering. The effectiveness of the proposed methods is illustrated via numerical simulations of simple yet paradigmatic examples, demonstrating how switching strategies converge faster than open-loop engineered dissipation. (c) 2024 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 39 条
[1]  
Alicki R., 2007, Quantum dynamical semigroups and applications, V717
[2]   Modeling and Control of Quantum Systems: An Introduction [J].
Altafini, Claudio ;
Ticozzi, Francesco .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (08) :1898-1917
[3]  
Baggio G, 2021, QUANTUM INF COMPUT, V21, P737
[4]  
Barchielli A, 2009, LECT NOTES PHYS, V782, P1, DOI 10.1007/978-3-642-01298-3
[5]  
Belavkin Viacheslav P., 1989, Lecture Notes in Control and Information Sciences, P245
[6]   Exponential Stability of Subspaces for Quantum Stochastic Master Equations [J].
Benoist, Tristan ;
Pellegrini, Clement ;
Ticozzi, Francesco .
ANNALES HENRI POINCARE, 2017, 18 (06) :2045-2074
[7]  
Bhatia R., 1997, MATRIX ANAL, DOI [10.1007/978-1-4612-0653-8, DOI 10.1007/978-1-4612-0653-8]
[8]   An introduction to quantum filtering [J].
Bouten, Luc ;
Van Handel, Ramon ;
James, Matthew R. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (06) :2199-2241
[9]   SPECTRAL PROPERTIES OF POSITIVE MAPS ON CSTAR-ALGEBRAS [J].
EVANS, DE ;
HOEGHKROHN, R .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1978, 17 (APR) :345-355
[10]   Non-smooth Lyapunov function-based global stabilization for quantum filters [J].
Ge, Shuzhi Sam ;
Thanh Long Vu ;
Hang, Chang Chieh .
AUTOMATICA, 2012, 48 (06) :1031-1044