Interpreting Potts and Transformer Protein Models Through the Lens of Simplified Attention

被引:0
作者
Bhattacharya, Nicholas [1 ]
Thomas, Neil [1 ]
Rao, Roshan [1 ]
Dauparas, Justas [2 ]
Koo, Peter K. [3 ]
Baker, David [2 ]
Song, Yun S. [1 ,4 ]
Ovchinnikov, Sergey [5 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Univ Washington, Seattle, WA 98195 USA
[3] Cold Spring Harbor Lab, POB 100, Cold Spring Harbor, NY 11724 USA
[4] Chan Zuckerberg Biohub, San Francisco, CA USA
[5] Harvard Univ, Cambridge, MA 02138 USA
来源
BIOCOMPUTING 2022, PSB 2022 | 2022年
关键词
Contact Prediction; Representation Learning; Language Modeling; Attention; Transformer; BERT; Markov Random Fields; Potts Models; Self-supervised learning; CONTACT PREDICTIONS; COEVOLUTION; SEQUENCE; UNIREF;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The established approach to unsupervised protein contact prediction estimates coevolving positions using undirected graphical models. This approach trains a Potts model on a Multiple Sequence Alignment. Increasingly large Transformers are being pretrained on unlabeled, unaligned protein sequence databases and showing competitive performance on protein contact prediction. We argue that attention is a principled model of protein interactions, grounded in real properties of protein family data. We introduce an energy-based attention layer, factored attention, which, in a certain limit, recovers a Potts model, and use it to contrast Potts and Transformers. We show that the Transformer leverages hierarchical signal in protein family databases not captured by single-layer models. This raises the exciting possibility for the development of powerful structured models of protein family databases.
引用
收藏
页码:34 / 45
页数:12
相关论文
共 49 条
[1]  
Ba J L., LAYER NORMALIZATION, DOI [DOI 10.48550/ARXIV.1607.06450, 10.48550/arXiv.1607.06450]
[2]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[3]   Learning generative models for protein fold families [J].
Balakrishnan, Sivaraman ;
Kamisetty, Hetunandan ;
Carbonell, Jaime G. ;
Lee, Su-In ;
Langmead, Christopher James .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2011, 79 (04) :1061-1078
[4]  
Biewald L., 2020, Experiment Tracking with Weights and Biases
[5]   Automated protein subfamily identification and classification [J].
Brown, Duncan P. ;
Krishnamurthy, Nandini ;
Sjoelander, Kimmen .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (08) :1526-1538
[6]  
Brown TB, 2020, ADV NEUR IN, V33
[7]  
BURLEY SK, 1988, ADV PROTEIN CHEM, V39, P125
[8]   SCOPe: classification of large macromolecular structures in the structural classification of proteinsextended database [J].
Chandonia, John-Marc ;
Fox, Naomi K. ;
Brenner, Steven E. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D475-D481
[9]  
Dallago C., 2021, FLIP: benchmark tasks in fitness landscape inference for proteins
[10]  
Dauparas J., 2019, UNIFIED FRAMEWORK MO