On CR maps between hyperquadrics and Winkelmann hypersurfaces

被引:0
作者
Reiter, Michael [1 ]
Son, Duong Ngoc [2 ]
机构
[1] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Phenikaa Univ, Fac Fundamental Sci, Hanoi 12116, Vietnam
关键词
CR map; isometry; geometric rank; hyperquadric; PROPER HOLOMORPHIC MAPS; B-N; REAL HYPERSURFACES; SUPER-RIGIDITY; MAPPINGS; BALLS; FORMS; RANK; GAP;
D O I
10.1142/S0129167X24500496
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study CR maps between hyperquadrics and Winkelmann hypersurfaces. Based on a previous study on the CR Ahlfors derivative of Lamel-Son and a recent result of Huang-Lu-Tang-Xiao on CR maps between hyperquadrics, we prove that a transversal CR map from a hyperquadric into a hyperquadric or a Winkelmann hypersurface extends to a local holomorphic isometric embedding with respect to certain K & auml;hler metrics if and only if the Hermitian part of its CR Ahlfors derivative vanishes on an open set of the source. Our proof is based on relating the geometric rank of a CR map into a hyperquadric and its CR Ahlfors derivative.
引用
收藏
页数:19
相关论文
共 36 条
[1]   PROPER HOLOMORPHIC MAPPINGS IN CN [J].
ALEXANDER, H .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1977, 26 (01) :137-146
[2]   Mapping Bn into B3n-3 [J].
Andrews, Jared ;
Huang, Xiaojun ;
Ji, Shanyu ;
Yin, Wanke .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2016, 24 (02) :279-300
[3]   Super-rigidity for CR embeddings of real hypersurfaces into hyperquadrics [J].
Baouendi, M. S. ;
Ebenfelt, Peter ;
Huang, Xiaojun .
ADVANCES IN MATHEMATICS, 2008, 219 (05) :1427-1445
[4]   HOLOMORPHIC MAPPINGS BETWEEN HYPERQUADRICS WITH SMALL SIGNATURE DIFFERENCE [J].
Baouendi, M. Salah ;
Ebenfelt, Peter ;
Huang, Xiaojun .
AMERICAN JOURNAL OF MATHEMATICS, 2011, 133 (06) :1633-1661
[5]  
Baouendi MS, 2005, J DIFFER GEOM, V69, P379, DOI 10.4310/jdg/1121449110
[6]  
Cartan E., 1935, ABH MATH SEM HAMBURG, V11, P116
[7]  
Chen ZH, 2006, SCI CHINA SER A, V49, P1504, DOI 10.1007/s11425-006-2057-6
[8]   Mappings between balls with geometric and degeneracy rank two [J].
Cheng, Xiaoliang ;
Ji, Shanyu ;
Yin, Wanke .
SCIENCE CHINA-MATHEMATICS, 2019, 62 (10) :1947-1960
[9]  
CHERN SS, 1975, ACTA MATH-DJURSHOLM, V133, P219
[10]  
D'Angelo JP, 2007, ASIAN J MATH, V11, P89