Integrative analysis of metabolome and transcriptome reveals regulatory mechanisms of flavonoid biosynthesis in soybean under salt stress

被引:2
|
作者
Wang, Yubin [1 ,2 ]
Liu, Wei [1 ,2 ]
Li, Wei [1 ,2 ]
Wang, Caijie [1 ,2 ]
Dai, Haiying [1 ,2 ]
Xu, Ran [1 ,2 ]
Zhang, Yanwei [1 ,2 ]
Zhang, Lifeng [1 ,2 ]
机构
[1] Shandong Acad Agr Sci, Crop Res Inst, Jinan, Shandong, Peoples R China
[2] Shandong Engn Lab Featured Crops, Jinan, Shandong, Peoples R China
来源
关键词
soybean; salt stress; metabolome; transcriptome; flavonoid; regulatory mechanism; PHENYLPROPANOID METABOLISM; GENE-EXPRESSION; KEY ENZYME; IDENTIFICATION; ISOFLAVONES; SALINITY; SYNTHASE; PATHWAY; PROTEIN;
D O I
10.3389/fpls.2024.1415867
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Introduction Salt stress is a major environmental factor that constrains soybean growth, development, and productivity. Flavonoids are key secondary metabolites that play a crucial role in enhancing plant resistance to both biotic and abiotic stress. However, a comprehensive understanding of the regulatory mechanisms underlying flavonoid biosynthesis under salt stress in soybean is lacking.Methods In this study, an integrative analysis of soybean metabolome and transcriptome was conducted using two soybean lines, FQ03 (salt-sensitive, SS) and FQ07 (salt-tolerant, ST).Results A total of 650 significantly changed metabolites were identified in SS and ST after salt stress treatment. Among them, 151 flavonoids were categorized into nine classes, with flavones and flavonols being the predominant flavonoid types in soybean. Heatmap analysis showed higher contents of most flavonoid metabolites in ST than in SS under salt stress, and the total flavonoid content in ST was significantly higher than that in SS. In addition, transcriptome analysis revealed a higher number of differentially expressed genes (DEGs) in ST than in SS under salt stress. KEGG enrichment analysis revealed that DEGs were mainly enriched in pathways related to phenylpropanoid biosynthesis, isoflavonoid biosynthesis, flavonoid biosynthesis, as well as flavone and flavonol biosynthesis. Notably, 55 DEGs that were mapped to the flavonoid biosynthetic pathway were identified, with most showing higher expression levels in ST than in SS. Weighted gene correlation network analysis identified eight structural genes and six transcription factor genes as key regulators of flavonoid biosynthesis within the blue module. Furthermore, qRT-PCR results confirmed the accuracy of the transcriptomic data and reliability of the identified candidate genes.Discussion This study provides insights into the regulatory mechanisms underlying salt stress responses in soybean and highlights hub genes as potential targets for developing salt-tolerant soybean varieties.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] An Integrative Analysis of Metabolome and Transcriptome Reveals the Molecular Regulatory Mechanism of the Accumulation of Flavonoid Glycosides in Different Cyclocarya paliurus Ploidies
    Yu, Yanhao
    Qu, Yinquan
    Wang, Shuyang
    Wang, Qian
    Shang, Xulan
    Fu, Xiangxiang
    FORESTS, 2023, 14 (04):
  • [22] Integrative analysis of the metabolome and transcriptome reveals the mechanism of polyphenol biosynthesis in Taraxacum mongolicum
    Zhao, Xing
    Li, Yiguo
    Huang, Yuanchong
    Shen, Jun
    Xu, Huini
    Li, Kunzhi
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [23] Correction to: Integrated analysis of metabolome and transcriptome reveals key candidate genes involved in flavonoid biosynthesis in Pinellia ternata under heat stress
    Lianan Guo
    Jun Tan
    Xiaoshu Deng
    Rangyu Mo
    Yuan Pan
    Yueqing Cao
    Daxia Chen
    Journal of Plant Research, 2023, 136 : 577 - 577
  • [24] Integrative Analysis of Transcriptome and Metabolome Sheds Light on Flavonoid Biosynthesis in the Fruiting Body of Stropharia rugosoannulata
    Wu, Xian
    Du, Zhihui
    Liu, Lian
    Chen, Zhilin
    Li, Yurong
    Fu, Shaobin
    JOURNAL OF FUNGI, 2024, 10 (04)
  • [25] Integrative metabolome and transcriptome analysis reveals GbKCS and GbMYB involved in the biosynthesis of ginkgolic acids
    Feng, Zhi
    Fan, Kaifang
    Yao, Zhi
    Wang, Hui
    Wu, Xiuzhong
    Tang, Longping
    Wang, Qiye
    Wang, Yuanqing
    Wang, Yiqiang
    Li, Meng
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 220
  • [26] Integrated transcriptome and metabolome analysis reveals the response mechanisms of soybean to aluminum toxicity
    Zhou, Huiwen
    Wu, Lanhua
    Wang, Ruikai
    Wang, Can
    Xu, Mengge
    Zhang, Yan
    Song, Yingpei
    Wu, Yang
    PLANT AND SOIL, 2025,
  • [27] A Comparison of the Flavonoid Biosynthesis Mechanisms of Dendrobium Species by Analyzing the Transcriptome and Metabolome
    Liu, Sian
    Zhang, Hanyue
    Yuan, Yingdan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (19)
  • [28] Integrative Analysis of Transcriptome and Metabolome Reveals the Regulatory Network Governing Aroma Formation in Grape
    Huang, Liping
    Zhu, Yue
    Wang, Min
    Xun, Zhili
    Ma, Xiaohe
    Zhao, Qifeng
    HORTICULTURAE, 2024, 10 (11)
  • [29] Integrative analysis of metabolome and transcriptome reveals a dynamic regulatory network of potato tuber pigmentation
    Liu, Yuhui
    Li, Yuanming
    Liu, Zhen
    Wang, Lei
    Lin-Wang, Kui
    Zhu, Jinyong
    Bi, Zhenzhen
    Sun, Chao
    Zhang, Junlian
    Bai, Jiangping
    ISCIENCE, 2023, 26 (02)
  • [30] Metabolome and Transcriptome Analyses Unravel the Molecular Regulatory Mechanisms Involved in Photosynthesis of Cyclocarya paliurus under Salt Stress
    Zhang, Lei
    Zhang, Zijie
    Fang, Shengzuo
    Liu, Yang
    Shang, Xulan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (03)