Inferring gene regulatory networks from single-cell transcriptomics based on graph embedding

被引:4
作者
Gan, Yanglan [1 ]
Yu, Jiacheng [1 ]
Xu, Guangwei [1 ]
Yan, Cairong [1 ]
Zou, Guobing [2 ]
机构
[1] Donghua Univ, Sch Comp Sci & Technol, Shanghai 201620, Peoples R China
[2] Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
EXPRESSION; CIRCUITRY;
D O I
10.1093/bioinformatics/btae291
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Gene regulatory networks (GRNs) encode gene regulation in living organisms, and have become a critical tool to understand complex biological processes. However, due to the dynamic and complex nature of gene regulation, inferring GRNs from scRNA-seq data is still a challenging task. Existing computational methods usually focus on the close connections between genes, and ignore the global structure and distal regulatory relationships.Results In this study, we develop a supervised deep learning framework, IGEGRNS, to infer GRNs from scRNA-seq data based on graph embedding. In the framework, contextual information of genes is captured by GraphSAGE, which aggregates gene features and neighborhood structures to generate low-dimensional embedding for genes. Then, the k most influential nodes in the whole graph are filtered through Top-k pooling. Finally, potential regulatory relationships between genes are predicted by stacking CNNs. Compared with nine competing supervised and unsupervised methods, our method achieves better performance on six time-series scRNA-seq datasets.Availability and implementation Our method IGEGRNS is implemented in Python using the Pytorch machine learning library, and it is freely available at https://github.com/DHUDBlab/IGEGRNS.
引用
收藏
页数:9
相关论文
共 50 条
[41]   scPROTEIN: a versatile deep graph contrastive learning framework for single-cell proteomics embedding [J].
Li, Wei ;
Yang, Fan ;
Wang, Fang ;
Rong, Yu ;
Liu, Linjing ;
Wu, Bingzhe ;
Zhang, Han ;
Yao, Jianhua .
NATURE METHODS, 2024, 21 (04) :623-634
[42]   Lymphoma Heterogeneity Unraveled by Single-Cell Transcriptomics [J].
Ysebaert, Loic ;
Quillet-Mary, Anne ;
Tosolini, Marie ;
Pont, Frederic ;
Laurent, Camille ;
Fournie, Jean-Jacques .
FRONTIERS IN IMMUNOLOGY, 2021, 12
[43]   Single-Cell Transcriptomics of the Human Endocrine Pancreas [J].
Wang, Yue J. ;
Schug, Jonathan ;
Won, Kyoung-Jae ;
Liu, Chengyang ;
Naji, Ali ;
Avrahami, Dana ;
Golson, Maria L. ;
Kaestner, Klaus H. .
DIABETES, 2016, 65 (10) :3028-3038
[44]   Validation of noise models for single-cell transcriptomics [J].
Grun, Dominic ;
Kester, Lennart ;
van Oudenaarden, Alexander .
NATURE METHODS, 2014, 11 (06) :637-+
[45]   Tumour heterogeneity and personalized treatment screening based on single-cell transcriptomics [J].
Zhang, Xinying ;
Xie, Jiajie ;
Yang, Zixin ;
Yu, Carisa Kwok Wai ;
Hu, Yaohua ;
Qin, Jing .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2025, 27 :307-320
[46]   Temporal modelling using single-cell transcriptomics [J].
Ding, Jun ;
Sharon, Nadav ;
Bar-Joseph, Ziv .
NATURE REVIEWS GENETICS, 2022, 23 (06) :355-368
[47]   Single-cell transcriptomics in thyroid eye disease [J].
Ahsanuddin, Sofia ;
Wu, Albert Y. .
TAIWAN JOURNAL OF OPHTHALMOLOGY, 2024, 14 (04) :554-564
[48]   Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte [J].
Liu, Ziqing ;
Wang, Li ;
Welch, Joshua D. ;
Ma, Hong ;
Zhou, Yang ;
Vaseghi, Haley Ruth ;
Yu, Shuo ;
Wall, Joseph Blake ;
Alimohamadi, Sahar ;
Zheng, Michael ;
Yin, Chaoying ;
Shen, Weining ;
Prins, Jan F. ;
Liu, Jiandong ;
Qian, Li .
NATURE, 2017, 551 (7678) :100-+
[49]   Cell-Type-Specific Gene Regulatory Networks Underlying Murine Neonatal Heart Regeneration at Single-Cell Resolution [J].
Wang, Zhaoning ;
Cui, Miao ;
Shah, Akansha M. ;
Tan, Wei ;
Liu, Ning ;
Bassel-Duby, Rhonda ;
Olson, Eric N. .
CELL REPORTS, 2020, 33 (10)
[50]   Pathologic evolution-related Gene Analysis based on both single-cell and bulk transcriptomics in Colorectal Cancer [J].
Li, Jiali ;
Zeng, Zihang ;
Chen, Jiarui ;
Liu, Xingyu ;
Jiang, Xueping ;
Sun, Wenjie ;
Luo, Yuan ;
Ren, Jiangbo ;
Gong, Yan ;
Xie, Conghua .
JOURNAL OF CANCER, 2020, 11 (23) :6861-6873