Inferring gene regulatory networks from single-cell transcriptomics based on graph embedding

被引:4
作者
Gan, Yanglan [1 ]
Yu, Jiacheng [1 ]
Xu, Guangwei [1 ]
Yan, Cairong [1 ]
Zou, Guobing [2 ]
机构
[1] Donghua Univ, Sch Comp Sci & Technol, Shanghai 201620, Peoples R China
[2] Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
EXPRESSION; CIRCUITRY;
D O I
10.1093/bioinformatics/btae291
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Gene regulatory networks (GRNs) encode gene regulation in living organisms, and have become a critical tool to understand complex biological processes. However, due to the dynamic and complex nature of gene regulation, inferring GRNs from scRNA-seq data is still a challenging task. Existing computational methods usually focus on the close connections between genes, and ignore the global structure and distal regulatory relationships.Results In this study, we develop a supervised deep learning framework, IGEGRNS, to infer GRNs from scRNA-seq data based on graph embedding. In the framework, contextual information of genes is captured by GraphSAGE, which aggregates gene features and neighborhood structures to generate low-dimensional embedding for genes. Then, the k most influential nodes in the whole graph are filtered through Top-k pooling. Finally, potential regulatory relationships between genes are predicted by stacking CNNs. Compared with nine competing supervised and unsupervised methods, our method achieves better performance on six time-series scRNA-seq datasets.Availability and implementation Our method IGEGRNS is implemented in Python using the Pytorch machine learning library, and it is freely available at https://github.com/DHUDBlab/IGEGRNS.
引用
收藏
页数:9
相关论文
共 50 条
[21]   SCENIC plus : single-cell multiomic inference of enhancers and gene regulatory networks [J].
Gonzalez-Blas, Carmen Bravo ;
De Winter, Seppe ;
Hulselmans, Gert ;
Hecker, Nikolai ;
Matetovici, Irina ;
Christiaens, Valerie ;
Poovathingal, Suresh ;
Wouters, Jasper ;
Aibar, Sara ;
Aerts, Stein .
NATURE METHODS, 2023, 20 (09) :1355-+
[22]   Single-Cell Transcriptomics-Based Study of Transcriptional Regulatory Features in the Mouse Brain Vasculature [J].
Lin, Wei-Wei ;
Xu, Lin-Tao ;
Chen, Yi-Sheng ;
Go, Ken ;
Sun, Chenyu ;
Zhu, Yong-Jian .
BIOMED RESEARCH INTERNATIONAL, 2021, 2021
[23]   A cell atlas of the chick retina based on single-cell transcriptomics [J].
Yamagata, Masahito ;
Yan, Wenjun ;
Sanes, Joshua R. .
ELIFE, 2021, 10 :1-39
[24]   Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data [J].
Tanevski, Jovan ;
Thin Nguyen ;
Truong, Buu ;
Karaiskos, Nikos ;
Ahsen, Mehmet Eren ;
Zhang, Xinyu ;
Chang Shu ;
Ke Xu ;
Liang, Xiaoyu ;
Ying Hu ;
Pham, Hoang V. V. ;
Li Xiaomei ;
Le, Thuc D. ;
Tarca, Adi L. ;
Bhatti, Gaurav ;
Romero, Roberto ;
Karathanasis, Nestoras ;
Loher, Phillipe ;
Yang Chen ;
Ouyang, Zhengqing ;
Mao, Disheng ;
Zhang, Yuping ;
Zand, Maryam ;
Ruan, Jianhua ;
Hafemeister, Christoph ;
Peng Qiu ;
Duc Tran ;
Tin Nguyen ;
Gabor, Attila ;
Yu, Thomas ;
Guinney, Justin ;
Glaab, Enrico ;
Krause, Roland ;
Banda, Peter ;
Stolovitzky, Gustavo ;
Rajewsky, Nikolaus ;
Saez-Rodriguez, Julio ;
Meyer, Pablo .
LIFE SCIENCE ALLIANCE, 2020, 3 (11)
[25]   Computational reconstruction of the signalling networks surrounding implanted biomaterials from single-cell transcriptomics [J].
Cherry, Christopher ;
Maestas, David R. ;
Han, Jin ;
Andorko, James, I ;
Cahan, Patrick ;
Fertig, Elana J. ;
Garmire, Lana X. ;
Elisseeff, Jennifer H. .
NATURE BIOMEDICAL ENGINEERING, 2021, 5 (10) :1228-+
[26]   Inferring Phenotypic Properties from Single-Cell Characteristics [J].
Qiu, Peng .
PLOS ONE, 2012, 7 (05)
[27]   An algebra-based method for inferring gene regulatory networks [J].
Vera-Licona, Paola ;
Jarrah, Abdul ;
Garcia-Puente, Luis David ;
McGee, John ;
Laubenbacher, Reinhard .
BMC SYSTEMS BIOLOGY, 2014, 8
[28]   Inferring Gene Regulatory Networks from a Population of Yeast Segregants [J].
Chen, Chen ;
Zhang, Dabao ;
Hazbun, Tony R. ;
Zhang, Min .
SCIENTIFIC REPORTS, 2019, 9 (1)
[29]   Estimation of Gene Regulatory Networks from Cancer Transcriptomics Data [J].
Cho, Seong Beom .
PROCESSES, 2021, 9 (10)
[30]   MINI-EX:Integrative inference of single-cell gene regulatory networks in plants [J].
Ferrari, Camilla ;
Perez, Nicolas Manosalva ;
Vandepoele, Klaas .
MOLECULAR PLANT, 2022, 15 (11) :1807-1824