共 88 条
Potential retention of dissolved organic matter by soil minerals during wetland water-table fluctuations
被引:15
作者:
Wang, Simin
[1
,2
,3
,4
]
Liu, Ting
[1
,2
]
Zhu, Erxiong
[1
,2
]
He, Chen
[5
]
Shi, Quan
[5
]
Feng, Xiaojuan
[1
,2
,3
]
机构:
[1] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China
[2] China Natl Bot Garden, Beijing 100093, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Beijing Construct Engn Grp Environm Remediat Co Lt, Natl Engn Lab Site Remediat Technol, Beijing 100015, Peoples R China
[5] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
Wetlands;
Water -table fluctuations;
Dissolved organic carbon (DOC);
Mineral interaction;
Sorption;
MOLECULAR FRACTIONATION;
CHEMICAL-COMPOSITION;
CARBON;
IRON;
BIODEGRADABILITY;
ADSORPTION;
LIGNIN;
FOREST;
ACCUMULATION;
ASSOCIATIONS;
D O I:
10.1016/j.watres.2024.121412
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Wetlands export large amounts of dissolved organic carbon (DOC) downstream, which is sensitive to water -table fluctuations (WTFs). While numerous studies have shown that WTFs may decrease wetland DOC via enhancing DOC biodegradation, an alternative pathway, i.e., retention of dissolved organic matter (DOM) by soil minerals, remains under -investigated. Here, we conducted a water -table manipulation experiment on intact soil columns collected from three wetlands with varying contents of reactive metals and clay to examine the potential retention of DOM by soil minerals during WTFs. Using batch sorption experiments and Fourier transform ion cyclotron resonance mass spectrometry, we showed that mineral (bentonite) sorption mainly retained lignin-, aromatic- and humic-like compounds (i.e., adsorbable compounds), in contrast to the preferential removal of protein- and carbohydrate -like compounds during biodegradation. Seven cycles of WTFs significantly decreased the intensity of adsorbable compounds in DOM (by 50 +/- 21% based on fluorescence spectroscopy) and DOC adsorbability (by 2 - 20% and 1.9 - 12.7 mg L - 1 based on batch sorption experiment), to a comparable extent compared with biodegradable compounds (by 11 - 32% and 1.6 - 15.2 mg L - 1 ). Furthermore, oxidation of soil ferrous iron [Fe(II)] exerted a major control on the magnitude of potential DOM retention by minerals, while WTFs increased mineral -bound lignin phenols in the Zoige soil with the highest content of lignin phenols and Fe (II). Collectively, these results suggest that DOM retention by minerals likely played an important role in DOC decrease during WTFs, especially in soils with high contents of oxidizable Fe. Our findings support the 'iron gate ' mechanism of soil carbon protection by newly -formed Fe (hydr)oxides during water -table decline, and highlight an underappreciated process (mineral-DOM interaction) leading to contrasting fate (i.e., preservation) of DOC in wetlands compared to biodegradation. Mineral retention of wetland DOC hence deserves more attention under changing climate and human activities.
引用
收藏
页数:12
相关论文