A Comprehensive Survey on Source-Free Domain Adaptation

被引:29
|
作者
Li, Jingjing [1 ,2 ]
Yu, Zhiqi [3 ]
Du, Zhekai [3 ]
Zhu, Lei [4 ]
Shen, Heng Tao [3 ]
机构
[1] Univ Elect Sci & Technol China UESTC, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Chengdu 611731, Peoples R China
[3] Univ Elect Sci & Technol China UESTC, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[4] Tongji Univ, Sch Elect & Informat Engn, Shanghai 200070, Peoples R China
基金
中国国家自然科学基金;
关键词
Training; Surveys; Transfer learning; Adaptation models; Task analysis; Data models; Data privacy; Computer vision; data-free learning; domain adaptation; transfer learning;
D O I
10.1109/TPAMI.2024.3370978
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Over the past decade, domain adaptation has become a widely studied branch of transfer learning which aims to improve performance on target domains by leveraging knowledge from the source domain. Conventional domain adaptation methods often assume access to both source and target domain data simultaneously, which may not be feasible in real-world scenarios due to privacy and confidentiality concerns. As a result, the research of Source-Free Domain Adaptation (SFDA) has drawn growing attention in recent years, which only utilizes the source-trained model and unlabeled target data to adapt to the target domain. Despite the rapid explosion of SFDA work, there has been no timely and comprehensive survey in the field. To fill this gap, we provide a comprehensive survey of recent advances in SFDA and organize them into a unified categorization scheme based on the framework of transfer learning. Instead of presenting each approach independently, we modularize several components of each method to more clearly illustrate their relationships and mechanisms in light of the composite properties of each method. Furthermore, we compare the results of more than 30 representative SFDA methods on three popular classification benchmarks, namely Office-31, Office-home, and VisDA, to explore the effectiveness of various technical routes and the combination effects among them. Additionally, we briefly introduce the applications of SFDA and related fields. Drawing on our analysis of the challenges confronting SFDA, we offer some insights into future research directions and potential settings.
引用
收藏
页码:5743 / 5762
页数:20
相关论文
共 50 条
  • [1] Unleashing Knowledge Potential of Source Hypothesis for Source-Free Domain Adaptation
    Hu, Bingyu
    Liu, Jiawei
    Zheng, Kecheng
    Zha, Zheng-Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 5422 - 5434
  • [2] Intrinsic Consistency Preservation With Adaptively Reliable Samples for Source-Free Domain Adaptation
    Tian, Jialin
    El Saddik, Abdulmotaleb
    Xu, Xing
    Li, Dongshuai
    Cao, Zuo
    Shen, Heng Tao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 12
  • [3] Source-Free Open Compound Domain Adaptation in Semantic Segmentation
    Zhao, Yuyang
    Zhong, Zhun
    Luo, Zhiming
    Lee, Gim Hee
    Sebe, Nicu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 7019 - 7032
  • [4] Source-free unsupervised domain adaptation: A survey
    Fang, Yuqi
    Yap, Pew-Thian
    Lin, Weili
    Zhu, Hongtu
    Liu, Mingxia
    NEURAL NETWORKS, 2024, 174
  • [5] Source-free domain adaptation with unrestricted source hypothesis
    He, Jiujun
    Wu, Liang
    Tao, Chaofan
    Lv, Fengmao
    PATTERN RECOGNITION, 2024, 149
  • [6] Uncertainty-Induced Transferability Representation for Source-Free Unsupervised Domain Adaptation
    Pei, Jiangbo
    Jiang, Zhuqing
    Men, Aidong
    Chen, Liang
    Liu, Yang
    Chen, Qingchao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 2033 - 2048
  • [7] Progressive Source-Aware Transformer for Generalized Source-Free Domain Adaptation
    Tang, Song
    Shi, Yuji
    Song, Zihao
    Ye, Mao
    Zhang, Changshui
    Zhang, Jianwei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 4138 - 4152
  • [8] DCL: Dipolar Confidence Learning for Source-Free Unsupervised Domain Adaptation
    Tian, Qing
    Sun, Heyang
    Peng, Shun
    Zheng, Yuhui
    Wan, Jun
    Lei, Zhen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (06) : 4342 - 4353
  • [9] Source-Free Domain Adaptation With Self-Supervised Learning for Nonintrusive Load Monitoring
    Zhong, Feichi
    Shan, Zihan
    Si, Gangquan
    Liu, Aoming
    Zhao, Gerui
    Li, Bo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [10] SOURCE-FREE UNSUPERVISED DOMAIN ADAPTATION VIA DENOISING MUTUAL LEARNING
    Hao, Zhang
    Liang, Tian
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,