Efficient Cardiovascular Parameters Estimation for Fluid-Structure Simulations Using Gappy Proper Orthogonal Decomposition

被引:1
作者
Deus, J. [1 ]
Martin, E. [1 ,2 ]
机构
[1] Univ Vigo, Dept Ingn Mecan Maquinas & Motores Termicos & Flui, Campus Marcosende, Vigo 36310, Spain
[2] Univ Vigo, Inst Fis & Ciencias Aerosp IFCAE, Campus Lagoas, Orense 32004, Spain
关键词
Cardiovascular simulation; Windkessel model; Parameter estimation; Fluid structure interaction; Proper orthogonal decomposition; FLOW; HEMODYNAMICS; RECONSTRUCTION; POD;
D O I
10.1007/s10439-024-03568-z
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
As full-scale detailed hemodynamic simulations of the entire vasculature are not feasible, numerical analysis should be focused on specific regions of the cardiovascular system, which requires the identification of lumped parameters to represent the patient behavior outside the simulated computational domain. We present a novel technique for estimating cardiovascular model parameters using gappy Proper Orthogonal Decomposition (g-POD). A POD basis is constructed with FSI simulations for different values of the lumped model parameters, and a linear operator is applied to retain information that can be compared to the available patient measurements. Then, the POD coefficients of the reconstructed solution are computed either by projecting patient measurements or by solving a minimization problem with constraints. The POD reconstruction is then used to estimate the model parameters. In the first test case, the parameter values of a 3-element Windkessel model are approximated using artificial patient measurements, obtaining a relative error of less than 4.2%. In the second case, 4 sets of 3-element Windkessel are approximated in a patient's aorta geometry, resulting in an error of less than 8% for the flow and less than 5% for the pressure. The method shows accurate results even with noisy patient data. It automatically calculates the delay between measurements and simulations and has flexibility in the types of patient measurements that can handle (at specific points, spatial or time averaged). The method is easy to implement and can be used in simulations performed in general-purpose FSI software.
引用
收藏
页码:3037 / 3052
页数:16
相关论文
共 39 条
[1]   Development of a patient-specific simulation tool to analyse aortic dissections: Assessment of mixed patient-specific flow and pressure boundary conditions [J].
Alimohammadi, Mona ;
Agu, Obiekezie ;
Balabani, Stavroula ;
Diaz-Zuccarini, Vanessa .
MEDICAL ENGINEERING & PHYSICS, 2014, 36 (03) :275-284
[2]  
Arthurs Christopher J, 2020, Adv Model Simul Eng Sci, V7, P48, DOI [10.1186/s40323-020-00186-x, 10.1186/s40323-020-00186-x]
[3]  
Astrid P., 2004, Reduction of process simulation models: a proper orthogonal decomposition approach
[4]  
Baumgartner Helmut, 2021, Eur Heart J, V42, P563, DOI [10.15829/1560-4071-2021-4702, 10.15829/1560-4071-2021-4702, 10.1093/eurheartj/ehaa554]
[5]   Sequential parameter estimation for fluid-structure problems: Application to hemodynamics [J].
Bertoglio, Cristobal ;
Moireau, Philippe ;
Gerbeau, Jean-Frederic .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2012, 28 (04) :434-455
[6]  
Bia D, 2011, IEEE ENG MED BIO, P6454, DOI 10.1109/IEMBS.2011.6091593
[7]   Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition [J].
Bui-Thanh, T ;
Damodaran, A ;
Willcox, K .
AIAA JOURNAL, 2004, 42 (08) :1505-1516
[8]   Assessment of reduced-order unscented Kalman filter for parameter identification in 1-dimensional blood flow models using experimental data [J].
Caiazzo, A. ;
Caforio, Federica ;
Montecinos, Gino ;
Muller, Lucas O. ;
Blanco, Pablo J. ;
Toro, Eluterio F. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2017, 33 (08)
[9]   A Review of Computational Hemodynamics in Middle Cerebral Aneurysms and Rheological Models for Blood Flow [J].
Campo-Deano, Laura ;
Oliveira, Monica S. N. ;
Pinho, Fernando T. .
APPLIED MECHANICS REVIEWS, 2015, 67 (03)
[10]  
Duprez DA, 2009, ETHNIC DIS, V19, P243