Mechanically flexible piezoelectric organic single crystals for electrical energy harvesting

被引:24
作者
Bhunia, Surojit [1 ]
Karan, Sumanta Kumar [2 ]
Chowdhury, Rituparno [1 ]
Ghosh, Ishita [1 ]
Saha, Subhankar [3 ]
Das, Kaustav [1 ]
Mondal, Amit [1 ]
Nanda, Aman [2 ]
Khatua, Bhanu Bhusan [4 ]
Reddy, C. Malla [1 ,5 ]
机构
[1] Indian Inst Sci Educ & Res Kolkata, Dept Chem Sci, Nadia 741246, W Bengal, India
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[3] Islampur Coll, Dept Chem, Uttar Dinajpur 733202, W Bengal, India
[4] Indian Inst Technol Kharagpur, Mat Sci Ctr, Kharagpur 721302, India
[5] Indian Inst Technol Hyderabad, Dept Chem, Hyderabad 502285, India
关键词
NANOCOMPOSITE;
D O I
10.1016/j.chempr.2024.01.019
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Piezoelectric crystalline materials-a class of ordered materials that can derive electric current due to charge accumulation via electromechanical coupling-have gained tremendous interest owing to their use as highly portable energy sources; however, the exceptional mechanical bendability coupled with high crystallinity offered by molecular single crystals is yet to be explored. Here, we present the discovery of a mechanically flexible (bendable) all -organic single -crystalline material exhibiting a remarkable piezoelectric energy -harvesting property. These soft piezoelectric crystals, with helical structure and the presence of predominantly weak noncovalent interactions therein, allowed us to fabricate flexible, electrical energy -harvesting devices using a polymer matrix, which yielded instantaneous peak power density of - 66 mW/cm 3 with an excellent energy conversion efficiency of , - , 41%. The real -life application potential of the devices is validated by successfully powering LEDs and showcasing sensitivity to biomechanical activity. This research lays the foundation for designing flexible and environmentally friendly electronics using mechanically flexible organic single crystals.
引用
收藏
页码:1741 / 1754
页数:15
相关论文
共 50 条
[31]   Elastic organic semiconducting single crystals for durable all-flexible field-effect transistors: insights into the bending mechanism [J].
Samanta, Ranita ;
Das, Susobhan ;
Mondal, Saikat ;
Alkhidir, Tamador ;
Mohamed, Sharmarke ;
Senanayak, Satyaprasad P. ;
Reddy, C. Malla .
CHEMICAL SCIENCE, 2023, 14 (06) :1363-1371
[32]   A comprehensive review on the state-of-the-art of piezoelectric energy harvesting [J].
Sezer, Nurettin ;
Koc, Muammer .
NANO ENERGY, 2021, 80
[33]   The First Demonstration of Strain-Controlled Periodic Ferroelectric Domains with Superior Piezoelectric Response in Molecular Materials [J].
Song, Xian-Jiang ;
Xiong, Yu-An ;
Zhou, Ru-Jie ;
Cao, Xiao-Xing ;
Jing, Zheng-Yin ;
Ji, Hao-Ran ;
Gu, Zhu-Xiao ;
Sha, Tai-Ting ;
Xiong, Ren-Gen ;
You, Yu-Meng .
ADVANCED MATERIALS, 2023, 35 (19)
[34]   Nanoindentation in Crystal Engineering: Quantifying Mechanical Properties of Molecular Crystals [J].
Varughese, Sunil ;
Kiran, M. S. R. N. ;
Ramamurty, Upadrasta ;
Desiraju, Gautam R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (10) :2701-2712
[35]   Recent Advances in Organic and Organic-Inorganic Hybrid Materials for Piezoelectric Mechanical Energy Harvesting [J].
Vijayakanth, Thangavel ;
Liptrot, David J. ;
Gazit, Ehud ;
Boomishankar, Ramamoorthy ;
Bowen, Chris R. .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (17)
[36]   All-Organic Composites of Ferro- and Piezoelectric Phosphonium Salts for Mechanical Energy Harvesting Application [J].
Vijayakanth, Thangavel ;
Ram, Farsa ;
Praveenkumar, Balu ;
Shanmuganathan, Kadhiravan ;
Boomishankar, Ramamoorthy .
CHEMISTRY OF MATERIALS, 2019, 31 (15) :5964-5972
[37]   A Flexible Composite Mechanical Energy Harvester from a Ferroelectric Organoamino Phosphonium Salt [J].
Vijayakanth, Thangavel ;
Srivastava, Anant Kumar ;
Ram, Farsa ;
Kulkarni, Priyangi ;
Shanmuganathan, Kadhiravan ;
Praveenkumar, Balu ;
Boomishankar, Ramamoorthy .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (29) :9054-9058
[38]   Flexible and highly piezoelectric nanofibers with organic-inorganic coaxial structure for self-powered physiological multimodal sensing [J].
Wan, Xingyi ;
Wang, Zhuo ;
Zhao, Xinyang ;
Hu, Quanhong ;
Li, Zhou ;
Wang, Zhong Lin ;
Li, Linlin .
CHEMICAL ENGINEERING JOURNAL, 2023, 451
[39]   Graphene Thin Films by Noncovalent-Interaction-Driven Assembly of Graphene Monolayers for Flexible Supercapacitors [J].
Wang, Guo-Fei ;
Qin, Haili ;
Gao, Xiang ;
Cao, Yi ;
Wang, Wei ;
Wang, Feng-Chao ;
Wu, Heng-An ;
Cong, Huai-Ping ;
Yu, Shu-Hong .
CHEM, 2018, 4 (04) :896-910
[40]   Manipulating the Piezoelectric Response of Amino Acid-Based Assemblies by Supramolecular Engineering [J].
Wang, Yuehui ;
Liu, Shuaijie ;
Li, Lingling ;
Li, Hui ;
Yin, Yuanyuan ;
Rencus-Lazar, Sigal ;
Guerin, Sarah ;
Ouyang, Wengen ;
Thompson, Damien ;
Yang, Rusen ;
Cai, Kaiyong ;
Gazit, Ehud ;
Ji, Wei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (28) :15331-15342