Reduction of relative intensity noise in a diamond Raman laser

被引:2
作者
Liu, Yuxuan [1 ,2 ]
Yang, Xuezong [1 ]
Zhu, Chengjie [1 ,2 ]
Sun, Yuxiang [1 ]
Li, Muye [1 ]
Cheng, Xin [1 ]
Mildren, Richard P. [3 ]
Chen, Dijun [1 ,2 ]
Chen, Weibiao [1 ,2 ]
Feng, Yan
机构
[1] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
[3] Macquarie Univ, MQ Photon Res Ctr, Sch Math & Phys Sci, Sydney, Australia
基金
中国国家自然科学基金;
关键词
LONGITUDINAL-MODE STRUCTURE; HIGH-POWER; OUTPUT POWER; SINGLE; SUPPRESSION;
D O I
10.1364/OE.521303
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The relative intensity noise (RIN) characteristics of a continuous-wave diamond Raman laser are investigated for the first time. The results reveal the parasitic stimulated Brillouin scattering (SBS) that usually occurred with higher-order spatial modes in the diamond Raman resonator is a pivotal factor impacting the Raman longitudinal modes and deteriorating the RIN level. The diamond Raman laser automatically switches to single-longitudinal-mode operation and the RIN level is significantly decreased in the frequency range of 200 Hz to 1 MHz after the parasitic SBS is effectively suppressed through inserting a spatial aperture or a chi(2) nonlinear crystal into the cavity. Due to the introduction of additional nonlinear loss to the high intensity Raman fluctuations and the non-lasing spontaneous Raman modes, the chi(2) nonlinear crystal enables better performance in the RIN-level reduction compared to the spatial aperture which can only achieve SBS inhibition. The RIN reduction routes are well suited for various crystalline Raman media to achieve high power and low intensity noise laser at different wavelengths.
引用
收藏
页码:18562 / 18571
页数:10
相关论文
共 38 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   Intensity noise cancellation in solid-state laser at 1.5 μm using SHG depletion as a buffer reservoir [J].
Audo, Kevin ;
Alouini, Mehdi .
APPLIED OPTICS, 2018, 57 (07) :1524-1529
[3]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[4]   Feedback control of laser intensity noise [J].
Buchler, BC ;
Huntington, EH ;
Harb, CC ;
Ralph, TC .
PHYSICAL REVIEW A, 1998, 57 (02) :1286-1294
[5]   Relative intensity noise comparison of fiber laser and amplified spontaneous emission sources [J].
Cheng, Xin ;
Pan, Weiwei ;
Zeng, Xin ;
Dong, Jinyan ;
Cui, Shuzhen ;
Feng, Yan .
OPTICAL FIBER TECHNOLOGY, 2020, 54
[6]   Impact of Mode-Hopping Noise on InGaN Edge Emitting Laser Relative Intensity Noise Properties [J].
Congar, Antoine ;
Hussain, Kamal ;
Pareige, Christelle ;
Butte, Raphael ;
Grandjean, Nicolas ;
Besnard, Pascal ;
Trebaol, Stephane .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2018, 54 (01)
[7]   Noise reduction in solid-state lasers using a SHG-based buffer reservoir [J].
El Amili, Abdelkrim ;
Alouini, Mehdi .
OPTICS LETTERS, 2015, 40 (07) :1149-1152
[8]   Influence of the pump scheme on the output power and the intensity noise of a single-frequency continuous-wave laser [J].
Guo, Yongrui ;
Peng, Weina ;
Su, Jing ;
Lu, Huadong ;
Peng, Kunchi .
OPTICS EXPRESS, 2020, 28 (04) :5866-5874
[9]   Realization of a 101 W single-frequency continuous wave all-solid-state 1064 nm laser by means of mode self-reproduction [J].
Guo, Yongrui ;
Xu, Minzhi ;
Peng, Weina ;
Su, Jing ;
Lu, Huadong ;
Peng, Kunchi .
OPTICS LETTERS, 2018, 43 (24) :6017-6020
[10]   Investigation about the influence of longitudinal-mode structure of the laser on the relative intensity noise properties [J].
Guo, Yongrui ;
Lu, Huadong ;
Xu, Minzhi ;
Su, Jing ;
Peng, Kunchi .
OPTICS EXPRESS, 2018, 26 (16) :21108-21118