Interaction-Aware Trajectory Prediction with Point Transformer

被引:0
作者
Liu, Yahui [1 ,2 ]
Dai, Xingyuan [1 ,2 ]
Fang, Jianwu [3 ]
Tian, Bin [1 ,2 ]
Lv, Yisheng [1 ,2 ]
机构
[1] Chinese Acad Sci, State Key Lab Multimodal Artificial Intelligence, Inst Automat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[3] Changan Univ, Coll Transportat Engn, Xian 710064, Peoples R China
来源
2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC | 2023年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ITSC57777.2023.10422262
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To ensure safe and efficient autonomous driving, trajectory prediction system must account for social interactions among road participants. Graph-based models are leading approaches in modeling social interactions for trajectory prediction, but they face the challenges of designing an appropriate graph structure and processing complex interactions. We consider that the participants in a scene are a set of unstructured points, which are similar to point cloud data. Inspired by point cloud learning networks, we view the road participants in a scene as point cloud in a two-dimensional coordinate system, and utilize Point Transformer aggregator to process the interactions on both local and global level. Besides, we present a multiplex fusion of social and temporal information for trajectory prediction. We perform extensive experiments on the Argoverse motion forecasting dataset, and the results demonstrate the superior performance of our model for multi-agent trajectory prediction.
引用
收藏
页码:5694 / 5699
页数:6
相关论文
共 37 条
[1]  
Bhattacharyya P., 2023, CORL, P1793
[2]  
Chang C, 2019, WILEY SER PARA DIST, P3
[3]   Milestones in Autonomous Driving and Intelligent Vehicles: Survey of Surveys [J].
Chen, Long ;
Li, Yuchen ;
Huang, Chao ;
Li, Bai ;
Xing, Yang ;
Tian, Daxin ;
Li, Li ;
Hu, Zhongxu ;
Na, Xiaoxiang ;
Li, Zixuan ;
Teng, Siyu ;
Lv, Chen ;
Wang, Jinjun ;
Cao, Dongpu ;
Zheng, Nanning ;
Wang, Fei-Yue .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (02) :1046-1056
[4]   Parallel Driving OS: A Ubiquitous Operating System for Autonomous Driving in CPSS [J].
Chen, Long ;
Zhang, Yunqing ;
Tian, Bin ;
Ai, Yunfeng ;
Cao, Dongpu ;
Wang, Fei-Yue .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2022, 7 (04) :886-895
[5]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554
[6]  
Gao J., 2020, P IEEECVF C COMPUTER
[7]  
Gilles T., 2022, P INT C LEARN REPR I
[8]   GOHOME: Graph-Oriented Heatmap Output for future Motion Estimation [J].
Gilles, Thomas ;
Sabatini, Stefano ;
Tsishkou, Dzmitry ;
Stanciulescu, Bogdan ;
Moutarde, Fabien .
2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, :9107-9114
[9]   DenseTNT: End-to-end Trajectory Prediction from Dense Goal Sets [J].
Gu, Junru ;
Sun, Chen ;
Zhao, Hang .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :15283-15292
[10]   UST: Unifying Spatio-Temporal Context for Trajectory Prediction in Autonomous Driving [J].
He, Hao ;
Dai, Hengchen ;
Wang, Naiyan .
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, :5962-5969