Advancing Data-Efficient Exploitation for Semi-Supervised Remote Sensing Images Semantic Segmentation

被引:13
作者
Lv, Liang [1 ,2 ]
Zhang, Lefei [1 ,2 ]
机构
[1] Wuhan Univ, Inst Artificial Intelligence, Sch Comp Sci, Wuhan 430072, Peoples R China
[2] Hubei Luojia Lab, Wuhan, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Semantic segmentation; Training; Data augmentation; Predictive models; Deep learning; Data models; Computational modeling; Class prototype memory (CPM); dynamic decay threshold (DDT); multiperturbation dynamic consistency (MDC); remote sensing (RS) images; semantic segmentation; semi-supervised learning;
D O I
10.1109/TGRS.2024.3388199
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
To reduce the dependence of remote sensing (RS) image semantic segmentation models on extensive pixel-level annotated images, this article aims to address the issue of insufficient exploitation of RS images' potential within existing semi-supervised learning methods, introducing a novel semi-supervised RS image semantic segmentation method. Specifically, for unlabeled samples, the multiperturbation dynamic consistency (MDC) is proposed to align multiple predictions from diverse data augmentations; MDC leverages a dynamic decay threshold (DDT) instead of fixed thresholds to learn more reliable information, enriching the perturbation space and assisting the segmentation model in acquiring more discriminative feature representations. Furthermore, considering the rich contextual information in RS images, the class prototype memory (CPM) derived from labeled samples is maintained during the training stage, which is leveraged to guide the refinement of predictions from segmentation model at the inference stage. Extensive experiments are conducted on six RS image semantic segmentation datasets, including DFC22, iSAID, MER, MSL, GID-15, and Vaihingen. The experimental results demonstrate the superiority of the proposed method. The code is available at https://github.com/lvliang6879/MCSS.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 49 条
[1]   Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision [J].
Chen, Xiaokang ;
Yuan, Yuhui ;
Zeng, Gang ;
Wang, Jingdong .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :2613-2622
[2]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[3]   The 2022 IEEE GRSS Data Fusion Contest: Semisupervised Learning [J].
Hansch, Ronny ;
Persello, Claudio ;
Vivone, Gemine ;
Navarro, Javiera Castillo ;
Boulch, Alexandre ;
Lefevre, Sebastien ;
Le Saux, Bertrand .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (01) :334-337
[4]   ClassHyPer: ClassMix-Based Hybrid Perturbations for Deep Semi-Supervised Semantic Segmentation of Remote Sensing Imagery [J].
He, Yongjun ;
Wang, Jinfei ;
Liao, Chunhua ;
Shan, Bo ;
Zhou, Xin .
REMOTE SENSING, 2022, 14 (04)
[5]   Semantic Segmentation of Remote Sensing Images With Sparse Annotations [J].
Hua, Yuansheng ;
Marcos, Diego ;
Mou, Lichao ;
Zhu, Xiao Xiang ;
Tuia, Devis .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[6]   Brain-Inspired Remote Sensing Interpretation: A Comprehensive Survey [J].
Jiao, Licheng ;
Huang, Zhongjian ;
Liu, Xu ;
Yang, Yuting ;
Ma, Mengru ;
Zhao, Jiaxuan ;
You, Chao ;
Hou, Biao ;
Yang, Shuyuan ;
Liu, Fang ;
Ma, Wenping ;
Li, Lingling ;
Chen, Puhua ;
Feng, Zhixi ;
Tang, Xu ;
Guo, Yuwei ;
Zhang, Xiangrong ;
Quan, Dou ;
Wang, Shuang ;
Li, Weibin ;
Bai, Jing ;
Li, Yangyang ;
Shang, Ronghua ;
Feng, Jie .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 :2992-3033
[7]   PiCoCo: Pixelwise Contrast and Consistency Learning for Semisupervised Building Footprint Segmentation [J].
Kang, Jian ;
Wang, Zhirui ;
Zhu, Ruoxin ;
Sun, Xian ;
Fernandez-Beltran, Ruben ;
Plaza, Antonio .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 :10548-10559
[8]   Guided Collaborative Training for Pixel-Wise Semi-Supervised Learning [J].
Ke, Zhanghan ;
Qiu, Di ;
Li, Kaican ;
Yan, Qiong ;
Lau, Rynson W. H. .
COMPUTER VISION - ECCV 2020, PT XIII, 2020, 12358 :429-445
[9]  
Laine S., 2020, P BRIT MACH VIS C SE, P1
[10]   A Stepwise Domain Adaptive Segmentation Network With Covariate Shift Alleviation for Remote Sensing Imagery [J].
Li, Jiaojiao ;
Zi, Shunyao ;
Song, Rui ;
Li, Yunsong ;
Hu, Yinlin ;
Du, Qian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60