Artificial Intelligence for Cardiovascular Care-Part 1: Advances

被引:35
作者
Elias, Pierre [1 ,2 ]
Jain, Sneha S. [3 ]
Poterucha, Timothy [1 ]
Randazzo, Michael [4 ]
Jimenez, Francisco Lopez [5 ]
Khera, Rohan [6 ]
Perez, Marco [3 ]
Ouyang, David [7 ]
Pirruccello, James [2 ,8 ]
Salerno, Michael [3 ]
Einstein, Andrew J. [1 ]
Avram, Robert [9 ]
Tison, Geoffrey H. [8 ]
Nadkarni, Girish [10 ]
Natarajan, Vivek [11 ]
Pierson, Emma [12 ]
Beecy, Ashley [13 ,14 ]
Kumaraiah, Deepa [1 ,13 ]
Haggerty, Chris [2 ,13 ]
Silva, Jennifer N. Avari [15 ]
Maddox, Thomas M. [15 ]
机构
[1] Columbia Univ, Irving Med Ctr, Seymour Paul & Gloria Milstein Div Cardiol, New York, NY USA
[2] Columbia Univ, Irving Med Ctr, Dept Biomed Informat, New York, NY USA
[3] Stanford Univ, Sch Med, Div Cardiol, Palo Alto, CA USA
[4] Univ Chicago, Med Ctr, Div Cardiol, Chicago, IL USA
[5] Mayo Clin, Coll Med, Dept Cardiol, Rochester, MN USA
[6] Yale Sch Med, Div Cardiol, New Haven, CT USA
[7] Cedars Sinai Med Ctr, Div Cardiol, Los Angeles, CA USA
[8] Univ Calif San Francisco, Div Cardiol, San Francisco, CA USA
[9] Montreal Heart Inst, Div Cardiol, Montreal, PQ, Canada
[10] Icahn Sch Med Mt Sinai, New York, NY USA
[11] Google Hlth, Mountain View, CA USA
[12] Cornell Tech, Dept Comp Sci, New York, NY USA
[13] New York Presbyterian Hlth Syst, New York, NY USA
[14] Weill Cornell Med Coll, Div Cardiol, New York, NY USA
[15] Washington Univ, Sch Med, Div Cardiol, St Louis, MO USA
基金
美国国家卫生研究院;
关键词
artificial intelligence; cardiac imaging; deep learning; digital health; innovation; large language models; machine learning; MAGNETIC-RESONANCE; ATRIAL-FIBRILLATION; LEARNING ALGORITHM; EJECTION FRACTION; HEART-FAILURE; ELECTROCARDIOGRAM; DIAGNOSIS; STENOSIS; CLASSIFICATION; IDENTIFICATION;
D O I
10.1016/j.jacc.2024.03.400
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Recent artificial intelligence (AI) advancements in cardiovascular care offer potential enhancements in diagnosis, treatment, and outcomes. Innovations to date focus on automating measurements, enhancing image quality, and detecting diseases using novel methods. Applications span wearables, electrocardiograms, echocardiography, angiography, genetics, and more. AI models detect diseases from electrocardiograms at accuracy not previously achieved by technology or human experts, including reduced ejection fraction, valvular heart disease, and other cardiomyopathies. However, AI 's unique characteristics necessitate rigorous validation by addressing training methods, real-world efficacy, equity concerns, and long-term reliability. Despite an exponentially growing number of studies in cardiovascular AI, trials showing improvement in outcomes remain lacking. A number are currently underway. Embracing this rapidly evolving technology while setting a high evaluation benchmark will be crucial for cardiology to leverage AI to enhance patient care and the provider experience. (c) 2024 by the American College of Cardiology Foundation.
引用
收藏
页码:2472 / 2486
页数:15
相关论文
共 133 条
[71]   Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study [J].
Lin, Andrew ;
Manral, Nipun ;
McElhinney, Priscilla ;
Killekar, Aditya ;
Matsumoto, Hidenari ;
Kwiecinski, Jacek ;
Pieszko, Konrad ;
Razipour, Aryabod ;
Grodecki, Kajetan ;
Park, Caroline ;
Otaki, Yuka ;
Doris, Mhairi ;
Kwan, Alan C. ;
Han, Donghee ;
Kuronuma, Keiichiro ;
Tomasino, Guadalupe Flores ;
Tzolos, Evangelos ;
Shanbhag, Aakash ;
Goeller, Markus ;
Marwan, Mohamed ;
Gransar, Heidi ;
Tamarappoo, Balaji K. ;
Cadet, Sebastien ;
Achenbach, Stephan ;
Nicholls, Stephen J. ;
Wong, Dennis T. ;
Berman, Daniel S. ;
Dweck, Marc ;
Newby, David E. ;
Williams, Michelle C. ;
Slomka, Piotr J. ;
Dey, Damini .
LANCET DIGITAL HEALTH, 2022, 4 (04) :e256-e265
[72]   A Deep Learning-Enabled Electrocardiogram Model for the Identification of a Rare Inherited Arrhythmia: Brugada Syndrome [J].
Liu, Chih-Min ;
Liu, Chien-Liang ;
Hu, Kai-Wen ;
Tseng, Vincent S. ;
Chang, Shih-Lin ;
Lin, Yenn-Jiang ;
Lo, Li-Wei ;
Chung, Fa-Po ;
Chao, Tze-Fan ;
Tuan, Ta-Chuan ;
Liao, Jo-Nan ;
Lin, Chin-Yu ;
Chang, Ting-Yung ;
Fann, Cathy Shen-Jang ;
Higa, Satoshi ;
Yagi, Nobumori ;
Hu, Yu-Feng ;
Chen, Shih-Ann .
CANADIAN JOURNAL OF CARDIOLOGY, 2022, 38 (02) :152-159
[73]   Predictive value of DEEPVESSEL-fractional flow reserve and quantitative plaque analysis based on coronary CT angiography for major adverse cardiac events [J].
Liu, M. ;
Li, R. ;
Bai, C. ;
Chen, Q. ;
Yin, Y. ;
Chen, Y. ;
Zhou, X. ;
Zhao, X. .
CLINICAL RADIOLOGY, 2023, 78 (09) :E600-E607
[74]   Detection of Atrial Fibrillation in a Large Population Using Wearable Devices: The Fitbit Heart Study [J].
Lubitz, Steven A. ;
Faranesh, Anthony Z. ;
Selvaggi, Caitlin ;
Atlas, Steven J. ;
McManus, David D. ;
Singer, Daniel E. ;
Pagoto, Sherry ;
McConnell, Michael V. ;
Pantelopoulos, Alexandros ;
Foulkes, Andrea S. .
CIRCULATION, 2022, 146 (19) :1415-1424
[75]   Dynamic coronary roadmapping via catheter tip tracking in X-ray fluoroscopy with deep learning based Bayesian filtering [J].
Ma, Hua ;
Smal, Ihor ;
Daemen, Joost ;
van Walsum, Theo .
MEDICAL IMAGE ANALYSIS, 2020, 61
[76]   Automatic stenosis recognition from coronary angiography using convolutional neural networks [J].
Moon, Jong Hak ;
Lee, Da Young ;
Cha, Won Chul ;
Chung, Myung Jin ;
Lee, Kyu-Sung ;
Cho, Baek Hwan ;
Choi, Jin Ho .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 198
[77]   Utility of a Deep-Learning Algorithm to Guide Novices to Acquire Echocardiograms for Limited Diagnostic Use [J].
Narang, Akhil ;
Bae, Richard ;
Hong, Ha ;
Thomas, Yngvil ;
Surette, Samuel ;
Cadieu, Charles ;
Chaudhry, Ali ;
Martin, Randolph P. ;
McCarthy, Patrick M. ;
Rubenson, David S. ;
Goldstein, Steven ;
Little, Stephen H. ;
Lang, Roberto M. ;
Weissman, Neil J. ;
Thomas, James D. .
JAMA CARDIOLOGY, 2021, 6 (06) :624-632
[78]   The Prognostic Value of a Validated and Automated Intravascular Ultrasound-Derived Calcium Score [J].
Neleman, Tara ;
Liu, Shengnan ;
Tovar Forero, Maria N. ;
Hartman, Eline M. J. ;
Ligthart, Jurgen M. R. ;
Witberg, Karen T. ;
Cummins, Paul ;
Zijlstra, Felix ;
Van Mieghem, Nicolas M. ;
Boersma, Eric ;
van Soest, Gijs ;
Daemen, Joost .
JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH, 2021, 14 (05) :992-1000
[79]   Early Detection of Heart Failure Using Electronic Health Records Practical Implications for Time Before Diagnosis, Data Diversity, Data Quantity, and Data Density [J].
Ng, Kenney ;
Steinhubl, Steven R. ;
deFilippi, Christopher ;
Dey, Sanjoy ;
Stewart, Walter F. .
CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2016, 9 (06) :649-658
[80]   A machine learning approach based on ACMG/AMP guidelines for genomic variant classification and prioritization [J].
Nicora, Giovanna ;
Zucca, Susanna ;
Limongelli, Ivan ;
Bellazzi, Riccardo ;
Magni, Paolo .
SCIENTIFIC REPORTS, 2022, 12 (01)