Artificial Intelligence for Cardiovascular Care-Part 1: Advances

被引:33
作者
Elias, Pierre [1 ,2 ]
Jain, Sneha S. [3 ]
Poterucha, Timothy [1 ]
Randazzo, Michael [4 ]
Jimenez, Francisco Lopez [5 ]
Khera, Rohan [6 ]
Perez, Marco [3 ]
Ouyang, David [7 ]
Pirruccello, James [2 ,8 ]
Salerno, Michael [3 ]
Einstein, Andrew J. [1 ]
Avram, Robert [9 ]
Tison, Geoffrey H. [8 ]
Nadkarni, Girish [10 ]
Natarajan, Vivek [11 ]
Pierson, Emma [12 ]
Beecy, Ashley [13 ,14 ]
Kumaraiah, Deepa [1 ,13 ]
Haggerty, Chris [2 ,13 ]
Silva, Jennifer N. Avari [15 ]
Maddox, Thomas M. [15 ]
机构
[1] Columbia Univ, Irving Med Ctr, Seymour Paul & Gloria Milstein Div Cardiol, New York, NY USA
[2] Columbia Univ, Irving Med Ctr, Dept Biomed Informat, New York, NY USA
[3] Stanford Univ, Sch Med, Div Cardiol, Palo Alto, CA USA
[4] Univ Chicago, Med Ctr, Div Cardiol, Chicago, IL USA
[5] Mayo Clin, Coll Med, Dept Cardiol, Rochester, MN USA
[6] Yale Sch Med, Div Cardiol, New Haven, CT USA
[7] Cedars Sinai Med Ctr, Div Cardiol, Los Angeles, CA USA
[8] Univ Calif San Francisco, Div Cardiol, San Francisco, CA USA
[9] Montreal Heart Inst, Div Cardiol, Montreal, PQ, Canada
[10] Icahn Sch Med Mt Sinai, New York, NY USA
[11] Google Hlth, Mountain View, CA USA
[12] Cornell Tech, Dept Comp Sci, New York, NY USA
[13] New York Presbyterian Hlth Syst, New York, NY USA
[14] Weill Cornell Med Coll, Div Cardiol, New York, NY USA
[15] Washington Univ, Sch Med, Div Cardiol, St Louis, MO USA
基金
美国国家卫生研究院;
关键词
artificial intelligence; cardiac imaging; deep learning; digital health; innovation; large language models; machine learning; MAGNETIC-RESONANCE; ATRIAL-FIBRILLATION; LEARNING ALGORITHM; EJECTION FRACTION; HEART-FAILURE; ELECTROCARDIOGRAM; DIAGNOSIS; STENOSIS; CLASSIFICATION; IDENTIFICATION;
D O I
10.1016/j.jacc.2024.03.400
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Recent artificial intelligence (AI) advancements in cardiovascular care offer potential enhancements in diagnosis, treatment, and outcomes. Innovations to date focus on automating measurements, enhancing image quality, and detecting diseases using novel methods. Applications span wearables, electrocardiograms, echocardiography, angiography, genetics, and more. AI models detect diseases from electrocardiograms at accuracy not previously achieved by technology or human experts, including reduced ejection fraction, valvular heart disease, and other cardiomyopathies. However, AI 's unique characteristics necessitate rigorous validation by addressing training methods, real-world efficacy, equity concerns, and long-term reliability. Despite an exponentially growing number of studies in cardiovascular AI, trials showing improvement in outcomes remain lacking. A number are currently underway. Embracing this rapidly evolving technology while setting a high evaluation benchmark will be crucial for cardiology to leverage AI to enhance patient care and the provider experience. (c) 2024 by the American College of Cardiology Foundation.
引用
收藏
页码:2472 / 2486
页数:15
相关论文
共 133 条
[1]  
accessdata.fda, 510(k) Premarket Notification
[2]   Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea [J].
Adedinsewo, Demilade ;
Carter, Rickey E. ;
Attia, Zachi ;
Johnson, Patrick ;
Kashou, Anthony H. ;
Dugan, Jennifer L. ;
Albus, Michael ;
Sheele, Johnathan M. ;
Bellolio, Fernanda ;
Friedman, Paul A. ;
Lopez-Jimenez, Francisco ;
Noseworthy, Peter A. .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2020, 13 (08) :E008437
[3]   Automated Echocardiographic Detection of Heart Failure With Preserved Ejection Fraction Using Artificial Intelligence [J].
Akerman, Ashley P. ;
Porumb, Mihaela ;
Scott, Christopher G. ;
Beqiri, Arian ;
Chartsias, Agisilaos ;
Ryu, Alexander J. ;
Hawkes, William ;
Huntley, Geoffrey D. ;
Arystan, Ayana Z. ;
Kane, Garvan C. ;
Pislaru, Sorin V. ;
Lopez-Jimenez, Francisco ;
Gomez, Alberto ;
Sarwar, Rizwan ;
O'Driscoll, Jamie ;
Leeson, Paul ;
Upton, Ross ;
Woodward, Gary ;
Pellikka, Patricia A. .
JACC-ADVANCES, 2023, 2 (06)
[4]   Prospective evaluation of smartwatch-enabled detection of left ventricular dysfunction [J].
Attia Z.I. ;
Harmon D.M. ;
Dugan J. ;
Manka L. ;
Lopez-Jimenez F. ;
Lerman A. ;
Siontis K.C. ;
Noseworthy P.A. ;
Yao X. ;
Klavetter E.W. ;
Halamka J.D. ;
Asirvatham S.J. ;
Khan R. ;
Carter R.E. ;
Leibovich B.C. ;
Friedman P.A. .
Nature Medicine, 2022, 28 (12) :2497-2503
[5]   Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs [J].
Attia, Zachi, I ;
Friedman, Paul A. ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Kapa, Suraj .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2019, 12 (09)
[6]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[7]   Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Yao, Xiaoxi ;
Lopez-Jimenez, Francisco ;
Mohan, Tarun L. ;
Pellikka, Patricia A. ;
Carter, Rickey E. ;
Shah, Nilay D. ;
Friedman, Paul A. ;
Noseworthy, Peter A. .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2019, 30 (05) :668-674
[8]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[9]   Novel Bloodless Potassium Determination Using a Signal-Processed Single-Lead ECG [J].
Attia, Zachi I. ;
DeSimone, Christopher V. ;
Dillon, John J. ;
Sapir, Yehu ;
Somers, Virend K. ;
Dugan, Jennifer L. ;
Bruce, Charles J. ;
Ackerman, Michael J. ;
Asirvatham, Samuel J. ;
Striemer, Bryan L. ;
Bukartyk, Jan ;
Scott, Christopher G. ;
Bennet, Kevin E. ;
Ladewig, Dorothy J. ;
Gilles, Emily J. ;
Sadot, Dan ;
Geva, Amir B. ;
Friedman, Paul A. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2016, 5 (01)
[10]   A deep learning approach identifies new ECG features in congenital long QT syndrome [J].
Aufiero, Simona ;
Bleijendaal, Hidde ;
Robyns, Tomas ;
Vandenberk, Bert ;
Krijger, Christian ;
Bezzina, Connie ;
Zwinderman, Aeilko H. ;
Wilde, Arthur A. M. ;
Pinto, Yigal M. .
BMC MEDICINE, 2022, 20 (01)