Deep Neural Networks for Automated Outer Plexiform Layer Subsidence Detection on Retinal OCT of Patients With Intermediate AMD

被引:3
作者
Aresta, Guilherme [1 ]
Araujo, Teresa [1 ]
Reiter, Gregor S. [2 ]
Mai, Julia [2 ]
Riedl, Sophie [2 ]
Grechenig, Christoph [2 ]
Guymer, Robyn H. [3 ,4 ]
Wu, Zhichao [3 ,4 ]
Schmidt-Erfurth, Ursula [2 ]
Bogunovic, Hrvoje [1 ,2 ]
机构
[1] Med Univ Vienna, Dept Ophthalmol & Optometry, Christian Doppler Lab Artificial Intelligence Reti, Waehringer Guertel 18?20, A-1090 Vienna, Austria
[2] Med Univ Vienna, Dept Ophthalmol & Optometry, Lab Ophthalm Image Anal, Vienna, Austria
[3] Royal Victorian Eye & Ear Hosp, Ctr Eye Res Australia, East Melbourne, Vic, Australia
[4] Univ Melbourne, Dept Surg Ophthalmol, Melbourne, Vic, Australia
基金
英国医学研究理事会;
关键词
artificial intelligence; optical coherence tomography; age-related macular degeneration; OPTICAL COHERENCE TOMOGRAPHY; MACULAR DEGENERATION; GEOGRAPHIC ATROPHY; FEATURES;
D O I
10.1167/tvst.13.6.7
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: The subsidence of the outer plexiform layer (OPL) is an important imaging biomarker on optical coherence tomography (OCT) associated with early outer retinal atrophy and a risk factor for progression to geographic atrophy in patients with intermediate age-related macular degeneration (AMD). Deep neural networks (DNNs) for OCT can support automated detection and localization of this biomarker. Methods: The method predicts potential OPL subsidence locations on retinal OCTs. A detection module (DM) infers bounding boxes around subsidences with a likelihood score, and a classification module (CM) assesses subsidence presence at the B-scan level. Overlapping boxes between B-scans are combined and scored by the product of the DM and CM predictions. The volume-wise score is the maximum prediction across all B-scans. One development and one independent external data set were used with 140 and 26 patients with AMD, respectively. Results: The system detected more than 85% of OPL subsidences with less than one false-positive (FP)/scan. The average area under the curve was 0.94 +/- 0.03 for volume-level detection. Similar or better performance was achieved on the independent external data set. Conclusions: DNN systems can efficiently perform automated retinal layer subsidence detection in retinal OCT images. In particular, the proposed DNN system detects OPL subsidence with high sensitivity and a very limited number of FP detections. Translational Relevance: DNNs enable objective identification of early signs associated with high risk of progression to the atrophic late stage of AMD, ideally suited for screening and assessing the efficacy of the interventions aiming to slow disease progression.
引用
收藏
页数:14
相关论文
共 40 条
[1]   DR|GRADUATE: Uncertainty-aware deep learning-based diabetic retinopathy grading in eye fundus images [J].
Araujo, Teresa ;
Aresta, Guilherme ;
Mendonca, Luis ;
Penas, Susana ;
Maia, Carolina ;
Carneiro, Angela ;
Maria Mendonca, Ana ;
Campilho, Aurelio .
MEDICAL IMAGE ANALYSIS, 2020, 63
[2]   BACH: Grand challenge on breast cancer histology images [J].
Aresta, Guilherme ;
Araujo, Teresa ;
Kwok, Scotty ;
Chennamsetty, Sai Saketh ;
Safwan, Mohammed ;
Alex, Varghese ;
Marami, Bahram ;
Prastawa, Marcel ;
Chan, Monica ;
Donovan, Michael ;
Fernandez, Gerardo ;
Zeineh, Jack ;
Kohl, Matthias ;
Walz, Christoph ;
Ludwig, Florian ;
Braunewell, Stefan ;
Baust, Maximilian ;
Quoc Dang Vu ;
Minh Nguyen Nhat To ;
Kim, Eal ;
Kwak, Jin Tae ;
Galal, Sameh ;
Sanchez-Freire, Veronica ;
Brancati, Nadia ;
Frucci, Maria ;
Riccio, Daniel ;
Wang, Yaqi ;
Sun, Lingling ;
Ma, Kaiqiang ;
Fang, Jiannan ;
Kone, Ismael ;
Boulmane, Lahsen ;
Campilho, Aurelio ;
Eloy, Catarina ;
Polonia, Antonio ;
Aguiar, Paulo .
MEDICAL IMAGE ANALYSIS, 2019, 56 :122-139
[3]  
Baid U, 2021, Arxiv, DOI arXiv:2107.02314
[4]  
Bogunovic H, 2019, ELS MIC SOC BOOK SER, P273, DOI 10.1016/B978-0-08-102816-2.00015-0
[5]   Artificial intelligence for the detection of age-related macular degeneration in color fundus photographs: A systematic review and meta-analysis [J].
Dong, Li ;
Yang, Qiong ;
Zhang, Rui Heng ;
Wei, Wen Bin .
ECLINICALMEDICINE, 2021, 35
[6]   SD-LayerNet: Semi-supervised Retinal Layer Segmentation in OCT Using Disentangled Representation with Anatomical Priors [J].
Fazekas, Botond ;
Aresta, Guilherme ;
Lachinov, Dmitrii ;
Riedl, Sophie ;
Mai, Julia ;
Schmidt-Erfurth, Ursula ;
Bogunovic, Hrvoje .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII, 2022, 13438 :320-329
[7]   Optical Coherence Tomography Features Preceding the Onset of Advanced Age-Related Macular Degeneration [J].
Ferrara, Daniela ;
Silver, Rachel E. ;
Louzada, Ricardo N. ;
Novais, Eduardo A. ;
Collins, Giliann K. ;
Seddon, Johanna M. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (09) :3519-3529
[8]   Incomplete Retinal Pigment Epithelial and Outer Retinal Atrophy in Age-Related Macular Degeneration Classification of Atrophy Meeting Report 4 [J].
Guymer, Robyn H. ;
Rosenfeld, Philip J. ;
Curcio, Christine A. ;
Holz, Frank G. ;
Staurenghi, Giovanni ;
Freund, K. Bailey ;
Schmitz-Valckenberg, Steffen ;
Sparrow, Janet ;
Spaide, Richard F. ;
Tufail, Adnan ;
Chakravarthy, Usha ;
Jaffe, Glenn J. ;
Csaky, Karl ;
Sarraf, David ;
Mones, Jordi M. ;
Tadayoni, Ramin ;
Grunwald, Juan ;
Bottoni, Ferdinando ;
Liakopoulos, Sandra ;
Pauleikhoff, Daniel ;
Pagliarini, Sergio ;
Chew, Emily Y. ;
Viola, Francesco ;
Fleckenstein, Monika ;
Blodi, Barbara A. ;
Lim, Tock Han ;
Chong, Victor ;
Lutty, Jerry ;
Bird, Alan C. ;
Sadda, Srinivas R. .
OPHTHALMOLOGY, 2020, 127 (03) :394-409
[9]  
He KM, 2020, IEEE T PATTERN ANAL, V42, P386, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]
[10]   Structured layer surface segmentation for retina OCT using fully convolutional regression networks [J].
He, Yufan ;
Carass, Aaron ;
Liu, Yihao ;
Jedynak, Bruno M. ;
Solomon, Sharon D. ;
Saidha, Shiv ;
Calabresi, Peter A. ;
Prince, Jerry L. .
MEDICAL IMAGE ANALYSIS, 2021, 68 (68)