Physics-Informed Neural Network for Parameter Identification in a Piezoelectric Harvester

被引:0
作者
Bai, C. Y. [1 ]
Yeh, F. Y. [1 ]
Shu, Y. C. [1 ]
机构
[1] Natl Taiwan Univ, Inst Appl Mech, Taipei 106, Taiwan
来源
ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XVIII | 2024年 / 12946卷
关键词
parameter identification; physics-informed neural network (PINN); experimental sampling; piezoelectric harvester; vibration inverse problem; ENERGY; CIRCUIT; VALIDATION; EFFICIENCY; FRAMEWORK;
D O I
10.1117/12.3009800
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The article aims to develop a physics-informed neural network (PINN) for parameter identification in a piezoelectric harvester using experimental sampling data. The advantage of PINN lies in its efficient inverse calculation of parameters with minimal sampled signals. For instance, with a single piezoelectric oscillator, the data collection process requires only two sets of piezoelectric voltage waveforms acquired at different electric loads and excitation frequencies. The training process involves minimizing the loss function, which comprises the model-based differential equations and the sampled time-domain voltage signals. The results successfully achieve inverse parameter identification, covering mechanical damping ratio, capacitance, and voltage source (force magnitude divided by the piezoelectric constant). In addition, the voltage frequency response, based on the inverse parameters, agrees well with experimental observations, confirming the model's reliability.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Multi-layer thermal simulation using physics-informed neural network
    Peng, Bohan
    Panesar, Ajit
    ADDITIVE MANUFACTURING, 2024, 95
  • [32] PND: Physics-informed neural-network software for molecular dynamics applications
    Razakh, Taufeq Mohammed
    Wang, Beibei
    Jackson, Shane
    Kalia, Rajiv K.
    Nakano, Aiichiro
    Nomura, Ken-ichi
    Vashishta, Priya
    SOFTWAREX, 2021, 15
  • [33] Design of Turing Systems with Physics-Informed Neural Networks
    Kho, Jordon
    Koh, Winston
    Wong, Jian Cheng
    Chiu, Pao-Hsiung
    Ooi, Chin Chun
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1180 - 1186
  • [34] iPINNs: incremental learning for Physics-informed neural networks
    Dekhovich, Aleksandr
    Sluiter, Marcel H. F.
    Tax, David M. J.
    Bessa, Miguel A.
    ENGINEERING WITH COMPUTERS, 2025, 41 (01) : 389 - 402
  • [35] Towards physics-informed neural networks for landslide prediction
    Dahal, Ashok
    Lombardo, Luigi
    ENGINEERING GEOLOGY, 2025, 344
  • [36] Research on underwater acoustic field prediction method based on physics-informed neural network
    Du, Libin
    Wang, Zhengkai
    Lv, Zhichao
    Wang, Lei
    Han, Dongyue
    FRONTIERS IN MARINE SCIENCE, 2023, 10
  • [37] Seismic Inversion Based on Acoustic Wave Equations Using Physics-Informed Neural Network
    Zhang, Yijie
    Zhu, Xueyu
    Gao, Jinghuai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [38] Laplace HypoPINN: physics-informed neural network for hypocenter localization and its predictive uncertainty
    Izzatullah, Muhammad
    Yildirim, Isa Eren
    Bin Waheed, Umair
    Alkhalifah, Tariq
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2022, 3 (04):
  • [39] A Novel Neural-Network Device Modeling Based on Physics-Informed Machine Learning
    Kim, Bokyeom
    Shin, Mincheol
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (11) : 6021 - 6025
  • [40] A Physics-Informed Spatial-Temporal Neural Network for Reservoir Simulation and Uncertainty Quantification
    Bi, Jianfei
    Li, Jing
    Wu, Keliu
    Chen, Zhangxin
    Chen, Shengnan
    Jiang, Liangliang
    Feng, Dong
    Deng, Peng
    SPE JOURNAL, 2024, 29 (04): : 2026 - 2043