Physics-Informed Neural Network for Parameter Identification in a Piezoelectric Harvester

被引:0
|
作者
Bai, C. Y. [1 ]
Yeh, F. Y. [1 ]
Shu, Y. C. [1 ]
机构
[1] Natl Taiwan Univ, Inst Appl Mech, Taipei 106, Taiwan
关键词
parameter identification; physics-informed neural network (PINN); experimental sampling; piezoelectric harvester; vibration inverse problem; ENERGY; CIRCUIT; VALIDATION; EFFICIENCY; FRAMEWORK;
D O I
10.1117/12.3009800
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The article aims to develop a physics-informed neural network (PINN) for parameter identification in a piezoelectric harvester using experimental sampling data. The advantage of PINN lies in its efficient inverse calculation of parameters with minimal sampled signals. For instance, with a single piezoelectric oscillator, the data collection process requires only two sets of piezoelectric voltage waveforms acquired at different electric loads and excitation frequencies. The training process involves minimizing the loss function, which comprises the model-based differential equations and the sampled time-domain voltage signals. The results successfully achieve inverse parameter identification, covering mechanical damping ratio, capacitance, and voltage source (force magnitude divided by the piezoelectric constant). In addition, the voltage frequency response, based on the inverse parameters, agrees well with experimental observations, confirming the model's reliability.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Physics-Informed Neural Network for Parameter identification of Air Conditioning Load Models
    Luo, Xiao
    Wang, Yifei
    Zhu, Qing
    Liu, Hanyang
    Wang, Shuhong
    Wu, Minghe
    2024 THE 7TH INTERNATIONAL CONFERENCE ON ENERGY, ELECTRICAL AND POWER ENGINEERING, CEEPE 2024, 2024, : 948 - 953
  • [2] Physics-informed Neural Network for system identification of rotors
    Liu, Xue
    Cheng, Wei
    Xing, Ji
    Chen, Xuefeng
    Zhao, Zhibin
    Zhang, Rongyong
    Huang, Qian
    Lu, Jinqi
    Zhou, Hongpeng
    Zheng, Wei Xing
    Pan, Wei
    IFAC PAPERSONLINE, 2024, 58 (15): : 307 - 312
  • [3] Structural parameter identification using physics-informed neural networks
    Guo, Xin-Yu
    Fang, Sheng-En
    MEASUREMENT, 2023, 220
  • [4] A physics-informed neural network-based aerodynamic parameter identification method for aircraft
    Lin, Jie
    Chen, Shu-sheng
    Yang, Hua
    Jiang, Quan-feng
    Liu, Jie
    PHYSICS OF FLUIDS, 2025, 37 (02)
  • [5] A Feature-Encoded Physics-Informed Parameter Identification Neural Network for Musculoskeletal Systems
    Taneja, Karan
    He, Xiaolong
    He, QiZhi
    Zhao, Xinlun
    Lin, Yun-An
    Loh, Kenneth J.
    Chen, Jiun-Shyan
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (12):
  • [6] Parameter identification for a damage phase field model using a physics-informed neural network
    Rojas, Carlos J. G.
    Boldrini, Jos L.
    Bittencourt, Marco L.
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2023, 13 (03)
  • [7] Parameter identification for a damage phase field model using a physics-informed neural network
    Carlos J.G.Rojas
    Jos L.Boldrini
    Marco L.Bittencourt
    Theoretical & Applied Mechanics Letters, 2023, 13 (03) : 229 - 246
  • [8] A transfer learning enhanced physics-informed neural network for parameter identification in soft materials
    Zhu, Jing'ang
    Xue, Yiheng
    Liu, Zishun
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2024, 45 (10) : 1685 - 1704
  • [9] A transfer learning enhanced physics-informed neural network for parameter identification in soft materials
    Jing'ang ZHU
    Yiheng XUE
    Zishun LIU
    Applied Mathematics and Mechanics(English Edition), 2024, 45 (10) : 1685 - 1704
  • [10] A Physics-Informed Deep Neural Network based beam vibration framework for simulation and parameter identification
    Soyleyici, Cem
    Unver, Hakki Ozgur
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 141