Physics-Informed Neural Network for Parameter Identification in a Piezoelectric Harvester

被引:0
作者
Bai, C. Y. [1 ]
Yeh, F. Y. [1 ]
Shu, Y. C. [1 ]
机构
[1] Natl Taiwan Univ, Inst Appl Mech, Taipei 106, Taiwan
来源
ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XVIII | 2024年 / 12946卷
关键词
parameter identification; physics-informed neural network (PINN); experimental sampling; piezoelectric harvester; vibration inverse problem; ENERGY; CIRCUIT; VALIDATION; EFFICIENCY; FRAMEWORK;
D O I
10.1117/12.3009800
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The article aims to develop a physics-informed neural network (PINN) for parameter identification in a piezoelectric harvester using experimental sampling data. The advantage of PINN lies in its efficient inverse calculation of parameters with minimal sampled signals. For instance, with a single piezoelectric oscillator, the data collection process requires only two sets of piezoelectric voltage waveforms acquired at different electric loads and excitation frequencies. The training process involves minimizing the loss function, which comprises the model-based differential equations and the sampled time-domain voltage signals. The results successfully achieve inverse parameter identification, covering mechanical damping ratio, capacitance, and voltage source (force magnitude divided by the piezoelectric constant). In addition, the voltage frequency response, based on the inverse parameters, agrees well with experimental observations, confirming the model's reliability.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Physics-Informed Neural Network for Parameter identification of Air Conditioning Load Models
    Luo, Xiao
    Wang, Yifei
    Zhu, Qing
    Liu, Hanyang
    Wang, Shuhong
    Wu, Minghe
    2024 THE 7TH INTERNATIONAL CONFERENCE ON ENERGY, ELECTRICAL AND POWER ENGINEERING, CEEPE 2024, 2024, : 948 - 953
  • [2] Structural parameter identification using physics-informed neural networks
    Guo, Xin-Yu
    Fang, Sheng-En
    MEASUREMENT, 2023, 220
  • [3] A Feature-Encoded Physics-Informed Parameter Identification Neural Network for Musculoskeletal Systems
    Taneja, Karan
    He, Xiaolong
    He, QiZhi
    Zhao, Xinlun
    Lin, Yun-An
    Loh, Kenneth J.
    Chen, Jiun-Shyan
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (12):
  • [4] A transfer learning enhanced physics-informed neural network for parameter identification in soft materials
    Zhu, Jing'ang
    Xue, Yiheng
    Liu, Zishun
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2024, 45 (10) : 1685 - 1704
  • [5] Physics-informed convolutional neural network for microgrid economic dispatch
    Ge, Xiaoyu
    Khazaei, Javad
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2024, 40
  • [6] Parameter identification and platoon control for virtually coupled train set with physics-informed neural network dynamics model
    Liu, Yafei
    Yang, Lei
    Zhang, Shuaifei
    Kang, Yihao
    Xun, Jing
    Sun, Zhanbo
    VEHICLE SYSTEM DYNAMICS, 2025, 63 (01) : 71 - 92
  • [7] Kinetics Parameter Identification of Chain Shuttling Polymerization Based on Physics-Informed Neural Networks
    Zhao, Jieming
    Tian, Zhou
    Zhang, Xixiang
    Duan, Zhaoyang
    Lu, Jingyi
    IFAC PAPERSONLINE, 2024, 58 (14): : 184 - 191
  • [8] A physics-informed neural network approach to parameter estimation of lithium-ion battery electrochemical model
    Wang, Jingrong
    Peng, Qiao
    Meng, Jinhao
    Liu, Tianqi
    Peng, Jichang
    Teodorescu, Remus
    JOURNAL OF POWER SOURCES, 2024, 621
  • [9] Predicting ocean pressure field with a physics-informed neural network
    Yoon, Seunghyun
    Park, Yongsung
    Gerstoft, Peter
    Seong, Woojae
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 155 (03) : 2037 - 2049
  • [10] A Physics-Informed Neural Network approach for compartmental epidemiological models
    Millevoi, Caterina
    Pasetto, Damiano
    Ferronato, Massimiliano
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (09)