Unveiling the molecular mechanisms of the type IX secretion system's response regulator: Structural and functional insights

被引:0
作者
Saran, Anshu [1 ,2 ]
Kim, Hey-Min [3 ]
Manning, Ireland [4 ]
Hancock, Mark A. [5 ]
Schmitz, Claus [6 ]
Madej, Mariusz [7 ]
Potempa, Jan [7 ,8 ]
Sola, Maria [6 ]
Trempe, Jean-Francois [5 ]
Zhu, Yongtao [4 ,9 ]
Davey, Mary Ellen [3 ]
Zeytuni, Natalie [1 ,2 ]
机构
[1] McGill Univ, Dept Anat & Cell Biol, 3640 Rue Univ, Montreal, PQ H3A 0C7, Canada
[2] McGill Univ, Ctr Rech Biol Struct CRBS, 3649 Promenade Sir William Olser, Montreal, PQ H3G 0B1, Canada
[3] Forsyth Inst, Dept Microbiol, 245 First St, Cambridge, MA 02142 USA
[4] Minnesota State Univ, Dept Biol Sci, 242 Trafton Sci Ctr South, Mankato, MN 56001 USA
[5] McGill Univ, Dept Pharmacol & Therapeut, 3655 Promenade Sir William Osler, Montreal, PQ H3G 1Y6, Canada
[6] Spanish Res Council, Mol Biol Inst Barcelona, Dept Struct Biol, Barcelona Sci Pk, E-08028 Barcelona, Spain
[7] Jagiellonian Univ, Fac Biochem Biophys & Biotechnol, Dept Microbiol, Gronostajowa 7, PL-30387 Krakow, Poland
[8] Univ Louisville, Sch Dent, Dept Oral Immunol & Infect Dis, 501 S Preston St, Louisville, KY 40202 USA
[9] Xian Jiaotong Liverpool Univ, Dept Biol Sci, 111 Renai Rd,Suzhou Ind Pk, Suzhou 215123, Jiangsu, Peoples R China
来源
PNAS NEXUS | 2024年 / 3卷 / 08期
基金
美国国家卫生研究院; 加拿大创新基金会;
关键词
type IX secretion system; response regulator; alkaline phosphatase; Porphyromonas gingivalis; bacterial pathogenicity; GLIDING MOTILITY; PORPHYROMONAS-GINGIVALIS; CRYSTAL-STRUCTURE; PROTEINS; ZINC; PERIODONTITIS; HYDROLYSIS; GINGIPAINS; VIRULENCE; CLONING;
D O I
10.1093/pnasnexus/pgae316
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The type IX secretion system (T9SS) is a nanomachinery utilized by bacterial pathogens to facilitate infection. The system is regulated by a signaling cascade serving as its activation switch. A pivotal member in this cascade, the response regulator protein PorX, represents a promising drug target to prevent the secretion of virulence factors. Here, we provide a comprehensive characterization of PorX both in vitro and in vivo. First, our structural studies revealed PorX harbors a unique enzymatic effector domain, which, surprisingly, shares structural similarities with the alkaline phosphatase superfamily, involved in nucleotide and lipid signaling pathways. Importantly, such pathways have not been associated with the T9SS until now. Enzymatic characterization of PorX's effector domain revealed a zinc-dependent phosphodiesterase activity, with active site dimensions suitable to accommodate a large substrate. Unlike typical response regulators that dimerize via their receiver domain upon phosphorylation, we found that zinc can also induce conformational changes and promote PorX's dimerization via an unexpected interface. These findings suggest that PorX can serve as a cellular zinc sensor, broadening our understanding of its regulatory mechanisms. Despite the strict conservation of PorX in T9SS-utilizing bacteria, we demonstrate that PorX is essential for virulence factors secretion in Porphyromonas gingivalis and affects metabolic enzymes secretion in the nonpathogenic Flavobacterium johnsoniae, but not for the secretion of gliding adhesins. Overall, this study advances our structural and functional understanding of PorX, highlighting its potential as a druggable target for intervention strategies aimed at disrupting the T9SS and mitigating virulence in pathogenic species.
引用
收藏
页数:15
相关论文
共 36 条
  • [1] Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System
    Gorasia, Dhana G.
    Veith, Paul D.
    Hanssen, Eric G.
    Glew, Michelle D.
    Sato, Keiko
    Yukitake, Hideharu
    Nakayama, Koji
    Reynolds, Eric C.
    PLOS PATHOGENS, 2016, 12 (08)
  • [2] The Type IX Secretion System (T9SS): Highlights and Recent Insights into Its Structure and Function
    Lasica, Anna M.
    Ksiazek, Miroslaw
    Madej, Mariusz
    Potempa, Jan
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2017, 7
  • [3] Structural and functional insights into the C-terminal signal domain of the Bacteroidetes type-IX secretion system
    Mizgalska, Danuta
    Rodriguez-Banqueri, Arturo
    Veillard, Florian
    Ksiazek, Miroslaw
    Goulas, Theodoros
    Guevara, Tibisay
    Eckhard, Ulrich
    Potempa, Jan
    Gomis-Ruth, F. Xavier
    OPEN BIOLOGY, 2024, 14 (06)
  • [4] The PorX Response Regulator of the Porphyromonas gingivalis PorXY Two-Component System Does Not Directly Regulate the Type IX Secretion Genes but Binds the PorL Subunit
    Vincent, Maxence S.
    Durand, Eric
    Cascales, Eric
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2016, 6
  • [5] Riemerella anatipestifer gene AS87_08785 encodes a functional component, GldK, of the type IX secretion system
    Malhi, Kanwar Kumar
    Wang, Xiaolan
    Chen, Zongchao
    Ding, Chan
    Yu, Shengqing
    VETERINARY MICROBIOLOGY, 2019, 231 : 93 - 99
  • [6] Structural and functional analyses of the Porphyromonas gingivalis type IX secretion system PorN protein
    Fuchsbauer, Olivier
    Silva, Ignacio Lunar
    Cascales, Eric
    Roussel, Alain
    Leone, Philippe
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2022, 298 (03)
  • [7] The AtoC family response regulator upregulates an operon encoding putative outer membrane proteins sorted by type IX secretion system in Porphyromonas gingivalis
    Kawamura, Ayaka
    Nishikawa, Kiyoshi
    Iida, Haruka
    Miyazawa, Ken
    Goto, Shigemi
    Hasegawa, Yoshiaki
    JOURNAL OF ORAL BIOSCIENCES, 2023, 65 (01) : 80 - 87
  • [8] Protein interactome mapping of Porphyromonas gingivalis provides insights into the formation of the PorQ-Z complex of the type IX secretion system
    Gorasia, Dhana G.
    Veith, Paul D.
    Reynolds, Eric C.
    MOLECULAR ORAL MICROBIOLOGY, 2023, 38 (01) : 34 - 40
  • [9] Structural Model of a Porphyromonas gingivalis type IX Secretion System Shuttle Complex
    Dorgan, Ben
    Liu, Yichao
    Wang, Sunjun
    Aduse-Opoku, Joseph
    Whittaker, Sara B. -M.
    Roberts, Mark A. J.
    Lorenz, Christian D.
    Curtis, Michael A.
    Garnett, James A.
    JOURNAL OF MOLECULAR BIOLOGY, 2022, 434 (23)
  • [10] Structural and Functional Insights into the Pilotin-Secretin Complex of the Type II Secretion System
    Gu, Shuang
    Rehman, Saima
    Wang, Xiaohui
    Shevchik, Vladimir E.
    Pickersgill, Richard W.
    PLOS PATHOGENS, 2012, 8 (02)