Fully Automatic Quantitative Measurement of Equilibrium Radionuclide Angiocardiography Using a Convolutional Neural Network

被引:1
作者
Ha, Sejin [1 ]
Seo, Seung Yeon [2 ]
Park, Byung Soo [1 ]
Han, Sangwon [1 ]
Oh, Jungsu S. [1 ]
Chae, Sun Young [3 ]
Kim, Jae Seung [1 ]
Moon, Dae Hyuk [1 ]
机构
[1] Korea Univ, Coll Med, Anam Hosp, Dept Nucl Med, Seoul, South Korea
[2] Yonsei Univ, Dept Elect & Elect Engn, Seoul, South Korea
[3] Eulji Univ, Sch Med, Uijeongbu Eulji Med Ctr, Dept Internal Med, Uijongbu, South Korea
基金
新加坡国家研究基金会;
关键词
equilibrium radionuclide angiography; left ventricular ejection fraction; deep learning; convolutional neural networks; image segmentation; GUIDELINES;
D O I
10.1097/RLU.0000000000005275
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose The aim of this study was to generate deep learning-based regions of interest (ROIs) from equilibrium radionuclide angiography datasets for left ventricular ejection fraction (LVEF) measurement. Patients and Methods Manually drawn ROIs (mROIs) on end-systolic and end-diastolic images were extracted from reports in a Picture Archiving and Communications System. To reduce observer variability, preprocessed ROIs (pROIs) were delineated using a 41% threshold of the maximal pixel counts of the extracted mROIs and were labeled as ground-truth. Background ROIs were automatically created using an algorithm to identify areas with minimum counts within specified probability areas around the end-systolic ROI. A 2-dimensional U-Net convolutional neural network architecture was trained to generate deep learning-based ROIs (dlROIs) from pROIs. The model's performance was evaluated using Lin's concordance correlation coefficient (CCC). Bland-Altman plots were used to assess bias and 95% limits of agreement. Results A total of 41,462 scans (19,309 patients) were included. Strong concordance was found between LVEF measurements from dlROIs and pROIs (CCC = 85.6%; 95% confidence interval, 85.4%-85.9%), and between LVEF measurements from dlROIs and mROIs (CCC = 86.1%; 95% confidence interval, 85.8%-86.3%). In the Bland-Altman analysis, the mean differences and 95% limits of agreement of the LVEF measurements were -0.6% and -6.6% to 5.3%, respectively, for dlROIs and pROIs, and -0.4% and -6.3% to 5.4% for dlROIs and mROIs, respectively. In 37,537 scans (91%), the absolute LVEF difference between dlROIs and mROIs was <5%. Conclusions Our 2-dimensional U-Net convolutional neural network architecture showed excellent performance in generating LV ROIs from equilibrium radionuclide angiography scans. It may enhance the convenience and reproducibility of LVEF measurements.
引用
收藏
页码:727 / 732
页数:6
相关论文
共 17 条
[1]   FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0 [J].
Boellaard, Ronald ;
Delgado-Bolton, Roberto ;
Oyen, Wim J. G. ;
Giammarile, Francesco ;
Tatsch, Klaus ;
Eschner, Wolfgang ;
Verzijlbergen, Fred J. ;
Barrington, Sally F. ;
Pike, Lucy C. ;
Weber, Wolfgang A. ;
Stroobants, Sigrid ;
Delbeke, Dominique ;
Donohoe, Kevin J. ;
Holbrook, Scott ;
Graham, Michael M. ;
Testanera, Giorgio ;
Hoekstra, Otto S. ;
Zijlstra, Josee ;
Visser, Eric ;
Hoekstra, Corneline J. ;
Pruim, Jan ;
Willemsen, Antoon ;
Arends, Bertjan ;
Kotzerke, Joerg ;
Bockisch, Andreas ;
Beyer, Thomas ;
Chiti, Arturo ;
Krause, Bernd J. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 (02) :328-354
[2]   Deep-Learning 18F-FDG Uptake Classification Enables Total Metabolic Tumor Volume Estimation in Diffuse Large B-Cell Lymphoma [J].
Capobianco, Nicolo ;
Meignan, Michel ;
Cottereau, Anne-Segolene ;
Vercellino, Laetitia ;
Sibille, Ludovic ;
Spottiswoode, Bruce ;
Zuehlsdorff, Sven ;
Casasnovas, Olivier ;
Thieblemont, Catherine ;
Buvat, Irene .
JOURNAL OF NUCLEAR MEDICINE, 2021, 62 (01) :30-36
[3]   Deep Learning in Nuclear Medicine and Molecular Imaging: Current Perspectives and Future Directions [J].
Choi H. .
Nuclear Medicine and Molecular Imaging, 2018, 52 (2) :109-118
[4]   Equilibrium radionuclide angiocardiography [J].
James R. Corbett ;
Olakunle O. Akinboboye ;
Stephen L. Bacharach ;
Jeffrey S. Borer ;
Elias H. Botvinick ;
E. Gordon DePuey ;
Edward P. Ficaro ;
Christopher L. Hansen ;
Milena J. Henzlova ;
Serge Van Kriekinge .
Journal of Nuclear Cardiology, 2006, 13 (6) :e56-e79
[5]   Epidemiology of heart failure with preserved ejection fraction [J].
Dunlay, Shannon M. ;
Roger, Veronique L. ;
Redfield, Margaret M. .
NATURE REVIEWS CARDIOLOGY, 2017, 14 (10) :591-602
[6]   SNMMI Procedure Standard/EANM Guideline for Gated Equilibrium Radionuclide Angiography [J].
Farrell, Mary Beth ;
Galt, James R. ;
Georgoulias, Panagiotis ;
Malhotra, Saurabh ;
Pagnanelli, Robert ;
Rischpler, Christoph ;
Savir-Baruch, Bital .
JOURNAL OF NUCLEAR MEDICINE TECHNOLOGY, 2020, 48 (02) :126-135
[7]   Fully Automatic Quantitative Measurement of 18F-FDG PET/CT in Thymic Epithelial Tumors Using a Convolutional Neural Network [J].
Han, Sangwon ;
Oh, Jungsu S. ;
Kim, Yong-il ;
Seo, Seung Yeon ;
Lee, Geun Dong ;
Park, Min-Jae ;
Choi, Sehoon ;
Kim, Hyeong Ryul ;
Kim, Yong-Hee ;
Kim, Dong Kwan ;
Park, Seung-Il ;
Ryu, Jin-Sook .
CLINICAL NUCLEAR MEDICINE, 2022, 47 (07) :590-598
[8]   Diagnostic performance of deep learning models for detecting bone metastasis on whole-body bone scan in prostate cancer [J].
Han, Sangwon ;
Oh, Jungsu S. ;
Lee, Jong Jin .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (02) :585-595
[9]   EANM/ESC guidelines for radionuclide imaging of cardiac function [J].
Hesse, B. ;
Lindhardt, T. B. ;
Acampa, W. ;
Anagnostopoulos, C. ;
Ballinger, J. ;
Bax, J. J. ;
Edenbrandt, L. ;
Flotats, A. ;
Germano, G. ;
Stopar, T. Gmeiner ;
Franken, P. ;
Kelion, A. ;
Kjaer, A. ;
Le Guludec, D. ;
Ljungberg, M. ;
Maenhout, A. F. ;
Marcassa, C. ;
Marving, J. ;
McKiddie, F. ;
Schaefer, W. M. ;
Stegger, L. ;
Underwood, R. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2008, 35 (04) :851-885
[10]   Basal ganglia shape alterations in bipolar disorder [J].
Hwang, J ;
Lyoo, IK ;
Dager, SR ;
Friedman, SD ;
Oh, JS ;
Lee, JY ;
Kim, SJ ;
Dunner, DL ;
Renshaw, PF .
AMERICAN JOURNAL OF PSYCHIATRY, 2006, 163 (02) :276-285