Coherent and low-coherent enhanced backscattering in tissue models

被引:1
作者
Kuzmin, V. L. [1 ]
Zhavoronkov, Yu. A. [1 ,2 ]
Ul'yanov, S. V. [1 ,2 ]
机构
[1] Peter Great St Petersburg Polytech Univ, 29 Polytech skaya, St Petersburg 195251, Russia
[2] St Petersburg State Univ, Univ Skaya Emb 7-9, St Petersburg 199034, Russia
基金
俄罗斯科学基金会;
关键词
Backscattering; Monte Carlo; Low coherence; Bethe-Salpeter equation; WEAK-LOCALIZATION; MULTIPLE-SCATTERING; LIGHT; SIMULATION; RADIATION; PHOTONS;
D O I
10.1016/j.jqsrt.2024.109103
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We perform simulations of coherent backscattering enhancement, explicitly accounting for the finiteness of spatial coherence of radiation. Three plausible models are considered, which produce the broadening of the coherent backscattering angular profile with the loss of spatial coherence. These models show fair agreement with data obtained earlier for biological media. Additionally, the exact solution for the double scattering term is obtained; its numerical magnitude is shown to be non-dominant for evaluations in the biomedical area due to high scattering anisotropy.
引用
收藏
页数:6
相关论文
共 32 条
[1]   THEORETICAL-STUDY OF THE COHERENT BACKSCATTERING OF LIGHT BY DISORDERED MEDIA [J].
AKKERMANS, E ;
WOLF, PE ;
MAYNARD, R ;
MARET, G .
JOURNAL DE PHYSIQUE, 1988, 49 (01) :77-98
[2]  
Amic E, 1997, J PHYS I, V7, P445, DOI 10.1051/jp1:1997170
[3]   Establishing the diffuse correlation spectroscopy signal relationship with blood flow [J].
Boas, David A. ;
Sakadzic, Sava ;
Selb, Juliette ;
Farzam, Parisa ;
Franceschini, Maria Angela ;
Carp, Stefan A. .
NEUROPHOTONICS, 2016, 3 (03)
[4]  
Born M, 2019, Principles of optic, V7
[5]   Time domain diffuse correlation spectroscopy: modeling the effects of laser coherence length and instrument response function [J].
Cheng, Xiaojun ;
Tamborini, Davide ;
Carp, Stefan A. ;
Shatrovoy, Oleg ;
Zimmerman, Bernhard ;
Tyulmankov, Danil ;
Siegel, Andrew ;
Blackwell, Megan ;
Franceschini, Maria Angela ;
Boas, David A. .
OPTICS LETTERS, 2018, 43 (12) :2756-2759
[6]   An An overview of methods for deriving the radiative transfer theory from the Maxwell equations. II: Approach based on the Dyson and Bethe-Salpeter equations [J].
Doicu, Adrian ;
Mishchenko, Michael I. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2019, 224 :25-36
[7]   CORRELATION TRANSFER - DEVELOPMENT AND APPLICATION [J].
DOUGHERTY, RL ;
ACKERSON, BJ ;
REGUIGUI, NM ;
DORRINOWKOORANI, F ;
NOBBMANN, U .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1994, 52 (06) :713-727
[8]   WEAK LOCALIZATION OF PHOTONS - TERMINATION OF COHERENT RANDOM-WALKS BY ABSORPTION AND CONFINED GEOMETRY [J].
ETEMAD, S ;
THOMPSON, R ;
ANDREJCO, MJ ;
SAJEEV, J ;
MACKINTOSH, FC .
PHYSICAL REVIEW LETTERS, 1987, 59 (13) :1420-1423
[9]  
Hopf E, 1934, Cambridge tracts
[10]   Computations of scattering matrices of four types of non-spherical particles using diverse methods [J].
Hovenier, JW ;
Lumme, K ;
Mishchenko, MI ;
Voshchinnikov, NV ;
Mackowski, DW ;
Rahola, J .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1996, 55 (06) :695-705