Renormalization in Quantum Brain Dynamics

被引:2
作者
Nishiyama, Akihiro [1 ]
Tanaka, Shigenori [1 ]
Tuszynski, Jack A. [2 ,3 ,4 ]
机构
[1] Kobe Univ, Grad Sch Syst Informat, 1-1 Rokkodai Cho,Nada Ku, Kobe 6578501, Japan
[2] Univ Alberta, Cross Canc Inst, Dept Oncol, Edmonton, AB T6G 1Z2, Canada
[3] Univ Alberta, Dept Phys, Edmonton, AB T6G 2J1, Canada
[4] Politecn Torino, Dept Mech & Aerosp Engn, Corso Duca Abruzzi 24, I-10129 Turin, Italy
来源
APPLIEDMATH | 2023年 / 3卷 / 01期
关键词
Quantum Brain Dynamics; Quantum Field Theory; renormalization; THEORETICAL APPROACH; CONDENSATION; MICROTUBULES; COHERENCE; BEHAVIOR; MEMORY; FIELDS;
D O I
10.3390/appliedmath3010009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show renormalization in Quantum Brain Dynamics (QBD) in 3+1 dimensions, namely Quantum Electrodynamics with water rotational dipole fields. First, we introduce the Lagrangian density for QBD involving terms of water rotational dipole fields, photon fields and their interactions. Next, we show Feynman diagrams with 1-loop self-energy and vertex function in dipole coupling expansion in QBD. The counter-terms are derived from the coupling expansion of the water dipole moment. Our approach will be applied to numerical simulations of Kadanoff-Baym equations for water dipoles and photons to describe the breakdown of the rotational symmetry of dipoles, namely memory formation processes. It will also be extended to the renormalization group method for QBD with running parameters in multi-scales.
引用
收藏
页码:117 / 146
页数:30
相关论文
共 62 条
  • [1] The Effect of Spatially Inhomogeneous Extracellular Electric Fields on Neurons
    Anastassiou, Costas A.
    Montgomery, Sean M.
    Barahona, Mauricio
    Buzsaki, Gyoergy
    Koch, Christof
    [J]. JOURNAL OF NEUROSCIENCE, 2010, 30 (05) : 1925 - 1936
  • [2] [Anonymous], 2001, My Double Unveiled: The Dissipative Quantum Model of Brain
  • [3] Quantum-like generalization of the Bayesian updating scheme for objective and subjective mental uncertainties
    Asano, Masanari
    Basieva, Irina
    Khrennikov, Andrei
    Ohya, Masanori
    Tanaka, Yoshiharu
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2012, 56 (03) : 166 - 175
  • [4] Adaptive reconfiguration of fractal small-world human brain functional networks
    Bassettt, Danielle S.
    Meyer-Lindenberg, Andreas
    Achard, Sophie
    Duke, Thomas
    Bullmore, Edward T.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (51) : 19518 - 19523
  • [5] CONSERVATION LAWS AND CORRELATION FUNCTIONS
    BAYM, G
    KADANOFF, LP
    [J]. PHYSICAL REVIEW, 1961, 124 (02): : 287 - +
  • [6] SELF-CONSISTENT APPROXIMATIONS IN MANY-BODY SYSTEMS
    BAYM, G
    [J]. PHYSICAL REVIEW, 1962, 127 (04): : 1391 - &
  • [7] Beggs JM, 2003, J NEUROSCI, V23, P11167
  • [8] Berges J, 2004, AIP CONF PROC, V739, P3, DOI 10.1063/1.1843591
  • [9] Quantum cognition: a new theoretical approach to psychology
    Bruza, Peter D.
    Wang, Zheng
    Busemeyer, Jerome R.
    [J]. TRENDS IN COGNITIVE SCIENCES, 2015, 19 (07) : 383 - 393
  • [10] Quantum dynamics of human decision-making
    Busemeyer, Jerome R.
    Wang, Zheng
    Townsend, James T.
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2006, 50 (03) : 220 - 241