Discontinuous Galerkin methods for magnetic advection-diffusion problems

被引:1
作者
Wang, Jindong [1 ]
Wu, Shuonan [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Discontinuous Galerkin; Magnetic advection-diffusion; Degenerate Friedrichs system; Upwind scheme; Inf-sup condition; FINITE-ELEMENT-METHOD; RESIDUAL-FREE BUBBLES; STABILIZED GALERKIN; UNIFIED ANALYSIS; TRANSPORT; APPROXIMATIONS; CONVERGENCE; SCHEME; FLOWS;
D O I
10.1016/j.camwa.2024.08.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We devise and analyze a class of the primal discontinuous Galerkin methods for magnetic advection-diffusion problems based on the weighted-residual approach. In addition to the upwind stabilization, we explore some terms related to convection under the vector case that provides more flexibility in constructing the schemes. Under a degenerate Friedrichs system, we show the stability and optimal error estimate, which boil down to two ingredients - the weight function and the special projection - that contain information of advection. Numerical experiments are provided to verify the theoretical results.
引用
收藏
页码:43 / 54
页数:12
相关论文
共 44 条
[1]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[2]   DISCONTINUOUS GALERKIN METHODS FOR ADVECTION-DIFFUSION-REACTION PROBLEMS [J].
Ayuso, Blanca ;
Marini, L. Donatella .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :1391-1420
[3]   Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method [J].
Braack, M ;
Burman, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 43 (06) :2544-2566
[4]   Stabilization mechanisms in discontinuous Galerkin finite element methods [J].
Brezzi, F. ;
Cockburn, B. ;
Marini, L. D. ;
Suli, E. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (25-28) :3293-3310
[5]   A priori error analysis of residual-free bubbles for advection-diffusion problems [J].
Brezzi, F ;
Hughes, TJR ;
Marini, LD ;
Russo, A ;
Süli, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (06) :1933-1948
[6]   Discontinuous Galerkin methods for first-order hyperbolic problems [J].
Brezzi, F ;
Marini, LD ;
Suli, E .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (12) :1893-1903
[7]   CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS [J].
BREZZI, F ;
RUSSO, A .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1994, 4 (04) :571-587
[8]   Further considerations on residual-free bubbles for advective-diffusive equations [J].
Brezzi, F ;
Franca, LP ;
Russo, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 166 (1-2) :25-33
[9]   Applications of the pseudo residual-free bubbles to the stabilization of convection-diffusion problems [J].
Brezzi, F ;
Marini, D ;
Russo, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 166 (1-2) :51-63
[10]   A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty [J].
Burman, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :2012-2033