Classification of adulterant degree in liquid solutions through interferograms with machine learning

被引:3
作者
Lara-Rodriguez, L. D. [1 ,3 ]
Alvarez-Tamayo, R. I. [1 ]
Barcelata-Pinzon, A. [2 ]
Lopez-Melendez, E. [4 ]
Prieto-Cortes, P. [2 ]
机构
[1] Univ Popular Autonoma Estado Puebla, Fac Mechatron Bion & Aerosp, Puebla 72410, Mexico
[2] Univ Tecnol Puebla, Mechatron Div, Puebla 72300, Mexico
[3] Univ Politecn Puebla, Informat Technol Div, Juan C Bonilla 72640, Mexico
[4] Univ Tecnol Huejotizngo, Mechatron Div, Huejotzingo 74169, Mexico
关键词
Interferometry; Machine learning; Common-path interferometer; REFRACTIVE-INDEX; INTERFEROMETRY; ELLIPSOMETRY;
D O I
10.1016/j.optlastec.2024.111402
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this research, the use of machine learning techniques to classify optical interferometric images based on their intrinsic characteristics is proposed and demonstrated. Using unsupervised machine learning algorithms, interferogram images, obtained and captured from a DACPI interferometer, are successfully classified based on their fringe pattern characteristics, for 6 different concentrations of isopropyl alcohol in commercial rum. From three sets of samples, confusion matrices and classification accuracy are obtained, reaching an accuracy of 90.78%. The results obtained represent an effective alternative to evaluate the characteristics of optical interferograms without the use of phase extraction techniques. Furthermore, the robustness of the results obtained for the unsupervised techniques are promising for analyses using supervised techniques to improve the classification accuracy of interferograms.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Diabetes Mellitus Affected Patients Classification and Diagnosis through Machine Learning Techniques [J].
Mercaldo, Francesco ;
Nardone, Vittoria ;
Santone, Antonella .
KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS, 2017, 112 :2519-2528
[22]   Automated Breast Tissue Classification through Machine Learning using Dielectric Data [J].
Sanchez-Bayuela, Daniel Alvarez ;
Canicatti, Eliana ;
Badia, Mario ;
Sani, Lorenzo ;
Papini, Lorenzo ;
Romero Castellano, Cristina ;
Aguilar Angulo, Paul Martin ;
Giovanetti Gonzalez, Ruben ;
Cruz Hernandez, Lina Marcela ;
Ruiz Martin, Juan ;
Ghavami, Navid ;
Tiberi, Gianluigi ;
Monorchio, Agostino .
2023 17TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP, 2023,
[23]   Traffic Classification in IP Networks Through Machine Learning Techniques in Final Systems [J].
Gomez, Jorge ;
Riano, Velssy Hernandez ;
Ramirez-Gonzalez, Gustavo .
IEEE ACCESS, 2023, 11 :44932-44940
[24]   Classification of diabetic walking through machine learning: Survey targeting senior citizens [J].
Woo, Yeongju ;
Andres, Pizarroso Troncoso Carlos ;
Jeong, Hieyong ;
Shin, Choonsung .
3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (IEEE ICAIIC 2021), 2021, :435-437
[25]   Machine Learning solutions with MediaPipe [J].
Quinonez, Yadira ;
Lizarraga, Carmen ;
Aguayo, Raquel .
2022 11TH INTERNATIONAL CONFERENCE ON SOFTWARE PROCESS IMPROVEMENT, CIMPS, 2022, :212-215
[26]   Classification of severe obstructive sleep apnea with cognitive impairment using degree centrality: A machine learning analysis [J].
Liu, Xiang ;
Shu, Yongqiang ;
Yu, Pengfei ;
Li, Haijun ;
Duan, Wenfeng ;
Wei, Zhipeng ;
Li, Kunyao ;
Xie, Wei ;
Zeng, Yaping ;
Peng, Dechang .
FRONTIERS IN NEUROLOGY, 2022, 13
[27]   Application of bi-modal signal in the classification and recognition of drug addiction degree based on machine learning [J].
Gu, Xuelin ;
Yang, Banghua ;
Gao, Shouwei ;
Yan, Lin Feng ;
Xu, Ding ;
Wang, Wen .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) :6926-6940
[28]   Identification of predictive factors of the degree of adherence to the Mediterranean diet through machine-learning techniques [J].
Arceo-Vilas A. ;
Fernandez-Lozano C. ;
Pita S. ;
Pértega-Díaz S. ;
Pazos A. .
Fernandez-Lozano, Carlos (carlos.fernandez@udc.es), 1600, PeerJ Inc. (06) :1-21
[29]   Identification of predictive factors of the degree of adherence to the Mediterranean diet through machine-learning techniques [J].
Arceo-Vilas, Alba ;
Fernandez-Lozano, Carlos ;
Pita, Salvador ;
Pertega-Diaz, Sonia ;
Pazos, Alejandro .
PEERJ COMPUTER SCIENCE, 2020,
[30]   Modeling liquid rate through wellhead chokes using machine learning techniques [J].
Dabiri, Mohammad-Saber ;
Hadavimoghaddam, Fahimeh ;
Ashoorian, Sefatallah ;
Schaffie, Mahin ;
Hemmati-Sarapardeh, Abdolhossein .
SCIENTIFIC REPORTS, 2024, 14 (01)