Uncertainty analysis in acoustics: perturbation methods and isogeometric boundary element methods

被引:4
作者
Chen, Leilei [1 ,2 ]
Lian, Haojie [1 ,2 ]
Huo, Ruijin [1 ,3 ]
Du, Jing [4 ]
Liu, Weisong [5 ]
Meng, Zhuxuan [4 ]
Bordas, Stephane P. A. [6 ,7 ]
机构
[1] Huanghuai Univ, Coll Architecture & Civil Engn, Henan Int Joint Lab Struct Mech & Computat Simulat, Zhumadian 463000, Peoples R China
[2] Taiyuan Univ Technol, Key Lab In Situ Property Improving Min, Minist Educ, Taiyuan 030024, Peoples R China
[3] Xinyang Normal Univ, Coll Architecture & Civil Engn, Xinyang 464000, Peoples R China
[4] AMS, Ctr Strateg Assessment & Consulting, Beijing 100091, Peoples R China
[5] Acad Mil Sci, Beijing 100091, Peoples R China
[6] Univ Luxembourg, Inst Computat Engn, Fac Sci Technol & Commun, Esch Sur Alzette, Luxembourg
[7] Cardiff Univ, Sch Engn, Cardiff, Wales
基金
中国国家自然科学基金;
关键词
Acoustics; Uncertainty analysis; Perturbation method; Isogeometric boundary element method; Fast multipole method; Singular integral; TOPOLOGY OPTIMIZATION; INTEGRALS; BEM; SIMULATION;
D O I
10.1007/s00366-024-02018-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This study proposes a generalized nth-order perturbation method based on (isogeometric) boundary element methods for uncertainty analysis in 3D acoustic scattering problems. In this paper, for the first time, we derive nth-order Taylor expansions of 3D acoustic boundary integral equations, taking incident wave frequency as a random input variable. In addition, subdivision surface basis functions used in geometric modeling are employed to discretize the generalized nth-order derivative boundary integral equations, in order to avoid cumbersome meshing procedure and retain geometric accuracy. Moreover, the fast multipole method is introduced to accelerate the stochastic perturbation analysis with boundary element methods. Numerical examples are given to demonstrate the accuracy and efficiency of the proposed uncertainty quantification algorithm.
引用
收藏
页码:3875 / 3900
页数:26
相关论文
共 69 条
[1]   Divergence-conforming isogeometric collocation methods for the incompressible Navier-Stokes equations [J].
Aronson, Ryan M. ;
Evans, John A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 410
[2]   Subset simulation and its application to seismic risk based on dynamic analysis [J].
Au, SK ;
Beck, JL .
JOURNAL OF ENGINEERING MECHANICS, 2003, 129 (08) :901-917
[3]   An efficient automatic mesh generation algorithm for planar isogeometric analysis using high-order rational Bezier triangles [J].
Barroso, Elias Saraiva ;
Evans, John Andrew ;
Cavalcante-Neto, Joaquim Bento ;
Vidal, Creto Augusto ;
Evandro Jr, Parente .
ENGINEERING WITH COMPUTERS, 2022, 38 (05) :4387-4408
[4]   Isogeometric analysis using T-splines [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Evans, J. A. ;
Hughes, T. J. R. ;
Lipton, S. ;
Scott, M. A. ;
Sederberg, T. W. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :229-263
[5]   APPLICATION OF INTEGRAL EQUATION METHODS TO NUMERICAL SOLUTION OF SOME EXTERIOR BOUNDARY-VALUE PROBLEMS [J].
BURTON, AJ ;
MILLER, GF .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 323 (1553) :201-&
[6]   Isogeometric dual reciprocity BEM for solving non-Fourier transient heat transfer problems in FGMs with uncertainty analysis [J].
Cao, Geyong ;
Yu, Bo ;
Chen, Leilei ;
Yao, Weian .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 203
[7]   Multi-frequency acoustic topology optimization of sound-absorption materials with isogeometric boundary element methods accelerated by frequency-decoupling and model order reduction techniques [J].
Chen, L. L. ;
Lian, H. ;
Natarajan, S. ;
Zhao, W. ;
Chen, X. Y. ;
Bordas, S. P. A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 395
[8]   Bi-material topology optimization for fully coupled structural-acoustic with FEM-BEM [J].
Chen, L. L. ;
Lian, H. ;
Liu, Z. ;
Gong, Y. ;
Zheng, C. J. ;
Bordas, S. P. A. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 135 :182-195
[9]   Broadband topology optimization of three-dimensional structural-acoustic interaction with reduced order isogeometric FEM/BEM [J].
Chen, Leilei ;
Lian, Haojie ;
Dong, Hao-Wen ;
Yu, Peng ;
Jiang, Shujie ;
Bordas, Stephane P. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 509
[10]   Reduced order isogeometric boundary element methods for CAD-integrated shape optimization in electromagnetic scattering [J].
Chen, Leilei ;
Wang, Zhongwang ;
Lian, Haojie ;
Ma, Yujing ;
Meng, Zhuxuan ;
Li, Pei ;
Ding, Chensen ;
Bordas, Stephane P. A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 419